login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248427
Circumference of the (n,n)-knight graph.
1
8, 14, 24, 36, 48, 64, 80, 100, 120, 144, 168, 196, 224, 256, 288, 324, 360, 400, 440, 484, 528, 576, 624, 676, 728, 784, 840, 900, 960, 1024, 1088, 1156, 1224, 1296, 1368, 1444, 1520, 1600, 1680, 1764, 1848, 1936, 2024, 2116, 2208, 2304, 2400, 2500, 2600, 2704, 2808, 2916, 3024, 3136, 3248, 3364
OFFSET
3,1
COMMENTS
Colin Barker's conjectures confirmed using first Mathematica program. - Ray Chandler, Jan 14 2024
LINKS
Eric Weisstein's World of Mathematics, Graph Circumference
Eric Weisstein's World of Mathematics, Knight Graph
FORMULA
From Colin Barker, Oct 07 2014: (Start)
a(n) = (-1+(-1)^n+2*n^2)/2 for n>4.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>8.
G.f.: -2*x^3*(x^5-2*x^4+2*x^3-2*x^2-x+4) / ((x-1)^3*(x+1)).
(End)
MATHEMATICA
Table[Piecewise[{{14, n == 4}, {n^2, Mod[n, 2] == 0}, {n^2 - 1, Mod[n, 2] == 1}}], {n, 3, 50}]
CoefficientList[Series[-2x^3(x^5-2x^4+2x^3-2x^2-x+4)/((x-1)^3(x+1)), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, 0, -2, 1}, {8, 14, 24, 36, 48, 64}, 50] (* Harvey P. Dale, Jan 05 2024 *)
CROSSREFS
Sequence in context: A250098 A155156 A275898 * A090993 A211525 A241161
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Oct 06 2014
STATUS
approved