login
A155156
Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.
3
8, 14, 24, 20, 34, 48, 26, 44, 62, 80, 32, 54, 76, 98, 120, 38, 64, 90, 116, 142, 168, 44, 74, 104, 134, 164, 194, 224, 50, 84, 118, 152, 186, 220, 254, 288, 56, 94, 132, 170, 208, 246, 284, 322, 360, 62, 104, 146, 188, 230, 272, 314, 356, 398, 440, 68, 114, 160, 206, 252, 298, 344, 390, 436, 482, 528
OFFSET
1,1
COMMENTS
First column: A016933, second column: A017317, third column: A063151, fourth column: 2*A017209. - Vincenzo Librandi, Nov 21 2012
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
FORMULA
T(n, k) = 2*A083487(n, k). - R. J. Mathar, Jan 05 2011
Sum_{k=0..n} T(n,k) = n*(2*n^2 + 5*n + 1) = 2*A162254(n) = A163832(n). - G. C. Greubel, Mar 20 2021
EXAMPLE
Triangle begins:
8;
14, 24;
20, 34, 48;
26, 44, 62, 80;
32, 54, 76, 98, 120;
38, 64, 90, 116, 142, 168;
44, 74, 104, 134, 164, 194, 224;
50, 84, 118, 152, 186, 220, 254, 288;
56, 94, 132, 170, 208, 246, 284, 322, 360;
62, 104, 146, 188, 230, 272, 314, 356, 398, 440;
MAPLE
seq(seq( 2*(2*n*k +n+k), k=1..n), n=1..15); # G. C. Greubel, Mar 20 2021
MATHEMATICA
T[n_, k_]:=4*n*k +2*n +2*k; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
PROG
(Magma) [4*n*k + 2*n + 2*k : k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
(Sage) flatten([[2*(2*n*k +n+k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 20 2021
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Vincenzo Librandi, Jan 21 2009
EXTENSIONS
Edited by Robert Hochberg, Jun 21 2010
STATUS
approved