login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155155 a(n) = 2*(10*3^n - 1). 1
18, 58, 178, 538, 1618, 4858, 14578, 43738, 131218, 393658, 1180978, 3542938, 10628818, 31886458, 95659378, 286978138, 860934418, 2582803258, 7748409778, 23245229338, 69735688018, 209207064058, 627621192178, 1882863576538 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-3).

FORMULA

a(n) = 4*a(n-1) - 3*a(n-2).

G.f.: ( 18 - 14*x ) / ( (1-x)*(1-3*x) ).

a(n) = 10*A048473(n) + 8 = A048473(n) + A048473(n+2).

a(n) = 3*a(n-1) - a(n-2) + 3*a(n-3) + 8.

From G. C. Greubel, Mar 20 2021: (Start)

a(n) = 18*A003462(n+1) - 14*A003462(n).

E.g.f.: 2*( 10*exp(3*x) - exp(x) ). (End)

a(n) = 2 * A198645(n). - Joerg Arndt, Mar 21 2021

MAPLE

seq(2*(10*3^n -1), n=0..30); # G. C. Greubel, Mar 20 2021

MATHEMATICA

2*(10*3^Range[0, 30] -1) (* G. C. Greubel, Mar 20 2021 *)

PROG

(Magma) [2*(10*3^n-1): n in [0..30]]; // Vincenzo Librandi, Aug 07 2011

(Sage) [2*(10*3^n - 1) for n in (0..30)] # G. C. Greubel, Mar 20 2021

CROSSREFS

Cf. A003462, A048473.

Sequence in context: A298384 A298765 A299460 * A048356 A244806 A027055

Adjacent sequences: A155152 A155153 A155154 * A155156 A155157 A155158

KEYWORD

nonn,easy,less

AUTHOR

Paul Curtz, Jan 21 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 23:46 EST 2022. Contains 358544 sequences. (Running on oeis4.)