login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027055
a(n) = T(n, n+4), T given by A027052.
2
1, 18, 59, 146, 319, 652, 1281, 2456, 4637, 8670, 16111, 29822, 55067, 101528, 187013, 344276, 633561, 1165674, 2144419, 3944650, 7255831, 13346084, 24547849, 45151152, 83046581, 152747190, 280946647, 516742262, 950438067
OFFSET
4,2
FORMULA
From Colin Barker, Feb 19 2016: (Start)
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) -a(n-4) +2*a(n-5) -a(n-6) for n>9.
G.f.: x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)).
(End)
a(n) = A001590(n+5) -n*(5+n), n>=4. - R. J. Mathar, Jun 15 2020
MAPLE
seq(coeff(series(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)), x, n+1), x, n), n = 4..40); # G. C. Greubel, Nov 06 2019
MATHEMATICA
LinearRecurrence[{4, -5, 2, -1, 2, -1}, {1, 18, 59, 146, 319, 652}, 40] (* G. C. Greubel, Nov 06 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))) \\ G. C. Greubel, Nov 06 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)) )); // G. C. Greubel, Nov 06 2019
(Sage)
def A027053_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))).list()
a=A027053_list(40); a[4:] # G. C. Greubel, Nov 06 2019
(GAP) a:=[1, 18, 59, 146, 319, 652];; for n in [7..40] do a[n]:=4*a[n-1] -5*a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Nov 06 2019
CROSSREFS
Sequence in context: A155155 A048356 A244806 * A056448 A056438 A218617
KEYWORD
nonn,easy
STATUS
approved