login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = T(n, n+4), T given by A027052.
2

%I #17 Sep 08 2022 08:44:49

%S 1,18,59,146,319,652,1281,2456,4637,8670,16111,29822,55067,101528,

%T 187013,344276,633561,1165674,2144419,3944650,7255831,13346084,

%U 24547849,45151152,83046581,152747190,280946647,516742262,950438067

%N a(n) = T(n, n+4), T given by A027052.

%H G. C. Greubel, <a href="/A027055/b027055.txt">Table of n, a(n) for n = 4..1003</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2,-1,2,-1).

%F From _Colin Barker_, Feb 19 2016: (Start)

%F a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) -a(n-4) +2*a(n-5) -a(n-6) for n>9.

%F G.f.: x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)).

%F (End)

%F a(n) = A001590(n+5) -n*(5+n), n>=4. - _R. J. Mathar_, Jun 15 2020

%p seq(coeff(series(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)), x, n+1), x, n), n = 4..40); # _G. C. Greubel_, Nov 06 2019

%t LinearRecurrence[{4,-5,2,-1,2,-1}, {1,18,59,146,319,652}, 40] (* _G. C. Greubel_, Nov 06 2019 *)

%o (PARI) my(x='x+O('x^40)); Vec(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))) \\ _G. C. Greubel_, Nov 06 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3)) )); // _G. C. Greubel_, Nov 06 2019

%o (Sage)

%o def A027053_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P(x^4*(1+14*x-8*x^2-2*x^3-5*x^4+4*x^5)/((1-x)^3*(1-x-x^2-x^3))).list()

%o a=A027053_list(40); a[4:] # _G. C. Greubel_, Nov 06 2019

%o (GAP) a:=[1,18,59,146,319,652];; for n in [7..40] do a[n]:=4*a[n-1] -5*a[n-2]+2*a[n-3]-a[n-4]+2*a[n-5]-a[n-6]; od; a; # _G. C. Greubel_, Nov 06 2019

%K nonn,easy

%O 4,2

%A _Clark Kimberling_