%I #17 Sep 08 2022 08:45:40
%S 8,14,24,20,34,48,26,44,62,80,32,54,76,98,120,38,64,90,116,142,168,44,
%T 74,104,134,164,194,224,50,84,118,152,186,220,254,288,56,94,132,170,
%U 208,246,284,322,360,62,104,146,188,230,272,314,356,398,440,68,114,160,206,252,298,344,390,436,482,528
%N Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.
%C First column: A016933, second column: A017317, third column: A063151, fourth column: 2*A017209. - _Vincenzo Librandi_, Nov 21 2012
%H Vincenzo Librandi, <a href="/A155156/b155156.txt">Rows n = 1..100, flattened</a>
%F T(n, k) = 2*A083487(n, k). - _R. J. Mathar_, Jan 05 2011
%F Sum_{k=0..n} T(n,k) = n*(2*n^2 + 5*n + 1) = 2*A162254(n) = A163832(n). - _G. C. Greubel_, Mar 20 2021
%e Triangle begins:
%e 8;
%e 14, 24;
%e 20, 34, 48;
%e 26, 44, 62, 80;
%e 32, 54, 76, 98, 120;
%e 38, 64, 90, 116, 142, 168;
%e 44, 74, 104, 134, 164, 194, 224;
%e 50, 84, 118, 152, 186, 220, 254, 288;
%e 56, 94, 132, 170, 208, 246, 284, 322, 360;
%e 62, 104, 146, 188, 230, 272, 314, 356, 398, 440;
%p seq(seq( 2*(2*n*k +n+k), k=1..n), n=1..15); # _G. C. Greubel_, Mar 20 2021
%t T[n_,k_]:=4*n*k +2*n +2*k; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* _Vincenzo Librandi_, Nov 21 2012 *)
%o (Magma) [4*n*k + 2*n + 2*k : k in [1..n], n in [1..11]]; // _Vincenzo Librandi_, Nov 21 2012
%o (Sage) flatten([[2*(2*n*k +n+k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 20 2021
%Y Cf. A016933, A017317, A063151, A017209. A083487, A162254, A163832 (row sums).
%K nonn,tabl,easy
%O 1,1
%A _Vincenzo Librandi_, Jan 21 2009
%E Edited by _Robert Hochberg_, Jun 21 2010