login
A163832
a(n) = n*(2*n^2 + 5*n + 1).
3
0, 8, 38, 102, 212, 380, 618, 938, 1352, 1872, 2510, 3278, 4188, 5252, 6482, 7890, 9488, 11288, 13302, 15542, 18020, 20748, 23738, 27002, 30552, 34400, 38558, 43038, 47852, 53012, 58530, 64418, 70688, 77352, 84422, 91910, 99828, 108188, 117002
OFFSET
0,2
COMMENTS
Row sums of triangle A155156.
FORMULA
G.f.: -2*x*(1+x)*(x-4)/(x-1)^4.
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
a(n) = A163683(n) + n = A163815(n) - 2*n = 2*A162254(n).
a(n) = -n*A168244(n+2). - Bruno Berselli, Feb 02 2012
E.g.f.: x*(8 + 11*x + 2*x^2)*exp(x). - G. C. Greubel, Aug 05 2017
MATHEMATICA
Table[n(2n^2+5n+1), {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 8, 38, 102}, 40] (* Harvey P. Dale, Feb 02 2012 *)
PROG
(PARI) for(n=0, 40, print1(n*(2*n^2+5*n+1)", ")); \\ Vincenzo Librandi, Feb 22 2012
CROSSREFS
Cf. A155156.
Sequence in context: A257215 A204076 A319960 * A362492 A139798 A359931
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 05 2009
EXTENSIONS
Edited by R. J. Mathar, Aug 05 2009
STATUS
approved