login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204076
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having equal diagonal elements or equal antidiagonal elements, and new values 0..2 introduced in row major order
8
8, 38, 38, 188, 329, 188, 938, 2882, 2882, 938, 4688, 25277, 45056, 25277, 4688, 23438, 221726, 706454, 706454, 221726, 23438, 117188, 1944977, 11081828, 19934369, 11081828, 1944977, 117188, 585938, 17061338, 173848010, 563880962, 563880962
OFFSET
1,1
COMMENTS
Table starts
......8........38.........188............938.............4688
.....38.......329........2882..........25277...........221726
....188......2882.......45056.........706454.........11081828
....938.....25277......706454.......19934369........563880962
...4688....221726....11081828......563880962......28864215128
..23438...1944977...173848010....15960507749....1480470688070
.117188..17061338..2727300008...451830740558...75985220860460
.585938.149662085.42785526110.12791537916233.3900809853901802
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (3*5^n+1)/2
k=2: a(n) = 10*a(n-1) -11*a(n-2) +2*a(n-3)
k=3: a(n) = 20*a(n-1) -73*a(n-2) +86*a(n-3) -32*a(n-4)
k=4: a(n) = 32*a(n-1) -55*a(n-2) -1588*a(n-3) +5428*a(n-4) -2664*a(n-5) -3936*a(n-6) +3040*a(n-7) -256*a(n-8)
k=5: (order 13 recurrence)
k=6: (order 29 recurrence)
k=7: (order 55 recurrence)
EXAMPLE
Some solutions for n=4 k=3
..0..0..0..0....0..0..0..0....0..0..1..2....0..0..0..1....0..0..1..2
..0..0..0..0....1..0..0..0....2..0..0..1....2..0..1..0....2..0..0..1
..1..0..0..2....2..1..0..0....1..2..0..0....0..2..0..1....0..1..0..0
..2..1..0..0....2..2..1..0....2..2..2..0....2..0..0..0....0..0..0..0
..1..2..1..0....2..0..2..1....0..2..2..2....2..2..0..1....2..0..0..0
CROSSREFS
Column 1 is A199213
Sequence in context: A201452 A128246 A257215 * A319960 A163832 A362492
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 10 2012
STATUS
approved