login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139798
Coefficient of x^5 in (1-x-x^2)^(-n).
0
8, 38, 111, 256, 511, 924, 1554, 2472, 3762, 5522, 7865, 10920, 14833, 19768, 25908, 33456, 42636, 53694, 66899, 82544, 100947, 122452, 147430, 176280, 209430, 247338, 290493, 339416, 394661, 456816, 526504, 604384, 691152, 787542
OFFSET
1,1
COMMENTS
The coefficient of x^5 in (1-x-x^2)^(-n) is the coefficient of x^5 in (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5)^n. Using the multinomial theorem one then finds that a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
The inverse binomial transform yields 8,30,43,29,9,1,0,0,... (0 continued) - R. J. Mathar, May 23 2008
REFERENCES
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
FORMULA
a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
O.g.f.: x(3x-4)(x-2)/(1-x)^6. - R. J. Mathar, May 23 2008
MATHEMATICA
a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {8, 38, 111, 256, 511, 924}, 40] (* Harvey P. Dale, Oct 13 2015 *)
PROG
(PARI) a(n)=binomial(n+2, 3)*(n^2+27*n+132)/20 \\ Charles R Greathouse IV, Jul 29 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sergio Falcon, May 22 2008
EXTENSIONS
More terms from R. J. Mathar, May 23 2008
STATUS
approved