The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139798 Coefficient of x^5 in (1-x-x^2)^(-n). 0
 8, 38, 111, 256, 511, 924, 1554, 2472, 3762, 5522, 7865, 10920, 14833, 19768, 25908, 33456, 42636, 53694, 66899, 82544, 100947, 122452, 147430, 176280, 209430, 247338, 290493, 339416, 394661, 456816, 526504, 604384, 691152, 787542 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The coefficient of x^5 in (1-x-x^2)^(-n) is the coefficient of x^5 in (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5)^n. Using the multinomial theorem one then finds that a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5! The inverse binomial transform yields 8,30,43,29,9,1,0,0,... (0 continued) - R. J. Mathar, May 23 2008 REFERENCES Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. LINKS Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5! O.g.f.: x(3x-4)(x-2)/(1-x)^6. - R. J. Mathar, May 23 2008 MATHEMATICA a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}] LinearRecurrence[{6, -15, 20, -15, 6, -1}, {8, 38, 111, 256, 511, 924}, 40] (* Harvey P. Dale, Oct 13 2015 *) PROG (PARI) a(n)=binomial(n+2, 3)*(n^2+27*n+132)/20 \\ Charles R Greathouse IV, Jul 29 2011 CROSSREFS Cf. A000096, A006503, A006504. Sequence in context: A204076 A319960 A163832 * A211063 A065762 A034009 Adjacent sequences:  A139795 A139796 A139797 * A139799 A139800 A139801 KEYWORD nonn,easy AUTHOR Sergio Falcon, May 22 2008 EXTENSIONS More terms from R. J. Mathar, May 23 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 15:33 EDT 2020. Contains 334684 sequences. (Running on oeis4.)