login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A139798 Coefficient of x^5 in (1-x-x^2)^(-n). 0
8, 38, 111, 256, 511, 924, 1554, 2472, 3762, 5522, 7865, 10920, 14833, 19768, 25908, 33456, 42636, 53694, 66899, 82544, 100947, 122452, 147430, 176280, 209430, 247338, 290493, 339416, 394661, 456816, 526504, 604384, 691152, 787542 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The coefficient of x^5 in (1-x-x^2)^(-n) is the coefficient of x^5 in (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5)^n. Using the multinomial theorem one then finds that a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!

The inverse binomial transform yields 8,30,43,29,9,1,0,0,... (0 continued) - R. J. Mathar, May 23 2008

REFERENCES

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

LINKS

Table of n, a(n) for n=1..34.

Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).

FORMULA

a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!

O.g.f.: x(3x-4)(x-2)/(1-x)^6. - R. J. Mathar, May 23 2008

MATHEMATICA

a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}]

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {8, 38, 111, 256, 511, 924}, 40] (* Harvey P. Dale, Oct 13 2015 *)

PROG

(PARI) a(n)=binomial(n+2, 3)*(n^2+27*n+132)/20 \\ Charles R Greathouse IV, Jul 29 2011

CROSSREFS

Cf. A000096, A006503, A006504.

Sequence in context: A204076 A319960 A163832 * A211063 A065762 A034009

Adjacent sequences:  A139795 A139796 A139797 * A139799 A139800 A139801

KEYWORD

nonn,easy

AUTHOR

Sergio Falcon, May 22 2008

EXTENSIONS

More terms from R. J. Mathar, May 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 15:33 EDT 2020. Contains 334684 sequences. (Running on oeis4.)