Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 13 2015 15:10:01
%S 8,38,111,256,511,924,1554,2472,3762,5522,7865,10920,14833,19768,
%T 25908,33456,42636,53694,66899,82544,100947,122452,147430,176280,
%U 209430,247338,290493,339416,394661,456816,526504,604384,691152,787542
%N Coefficient of x^5 in (1-x-x^2)^(-n).
%C The coefficient of x^5 in (1-x-x^2)^(-n) is the coefficient of x^5 in (1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5)^n. Using the multinomial theorem one then finds that a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
%C The inverse binomial transform yields 8,30,43,29,9,1,0,0,... (0 continued) - _R. J. Mathar_, May 23 2008
%D Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = n(n+1)(n+2)(n^2 + 27n + 132)/5!
%F O.g.f.: x(3x-4)(x-2)/(1-x)^6. - _R. J. Mathar_, May 23 2008
%t a[n_] := n(n + 1)(n + 2)(n^2 + 27n + 132)/5! Do[Print[n, " ", a[n]], {n, 1, 25}]
%t LinearRecurrence[{6,-15,20,-15,6,-1},{8,38,111,256,511,924},40] (* _Harvey P. Dale_, Oct 13 2015 *)
%o (PARI) a(n)=binomial(n+2,3)*(n^2+27*n+132)/20 \\ _Charles R Greathouse IV_, Jul 29 2011
%Y Cf. A000096, A006503, A006504.
%K nonn,easy
%O 1,1
%A _Sergio Falcon_, May 22 2008
%E More terms from _R. J. Mathar_, May 23 2008