|
|
A006503
|
|
a(n) = n*(n+1)*(n+8)/6.
(Formerly M2835)
|
|
14
|
|
|
0, 3, 10, 22, 40, 65, 98, 140, 192, 255, 330, 418, 520, 637, 770, 920, 1088, 1275, 1482, 1710, 1960, 2233, 2530, 2852, 3200, 3575, 3978, 4410, 4872, 5365, 5890, 6448, 7040, 7667, 8330, 9030, 9768, 10545, 11362, 12220, 13120, 14063, 15050, 16082, 17160, 18285
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
If Y is a 3-subset of an n-set X then, for n>=4, a(n-4) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007
The coefficient of x^3 in (1-x-x^2)^{-n} is the coefficient of x^3 in (1+x+2x^2+3x^3)^n. Using the multinomial theorem one then finds that a(n)=n(n+1)(n+8)/3!. - Sergio Falcon, May 22 2008
|
|
REFERENCES
|
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..5000
G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-44. (Annotated scanned copy)
G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-48.
M. Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8, section 3.
P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
P. Moree, Convoluted Convolved Fibonacci Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
|
|
FORMULA
|
a(n) = n*(n+1)*(n+8)/6.
G.f.: x*(3-2*x)/(1-x)^4.
a(n) = A000292(n) + A002378(n). - Reinhard Zumkeller, Sep 24 2008
a(0)=0, a(1)=3, a(2)=10, a(3)=22, a(n)=4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4). - Harvey P. Dale, Jan 27 2016
|
|
MAPLE
|
A006503:=-(-3+2*z)/(z-1)**4; # [Simon Plouffe in his 1992 dissertation.]
|
|
MATHEMATICA
|
Clear["Global`*"] a[n_] := n(n + 1)(n + 8)/3! Do[Print[n, " ", a[n]], {n, 1, 25}] (* Sergio Falcon, May 22 2008 *)
Table[n(n+1)(n+8)/6, {n, 0, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 3, 10, 22}, 50] (* Harvey P. Dale, Jan 27 2016 *)
|
|
PROG
|
(PARI) x='x+O('x^50); concat([0], Vec(x*(3-2*x)/(1-x)^4)) \\ G. C. Greubel, May 11 2017
|
|
CROSSREFS
|
a(n) = A095660(n+2, 3): fourth column of (1, 3)-Pascal triangle.
Cf. A000027, A000096, A006504.
Row n=3 of A144064.
Sequence in context: A326124 A122795 A140066 * A248851 A023554 A294414
Adjacent sequences: A006500 A006501 A006502 * A006504 A006505 A006506
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Better description from Jeffrey Shallit, Aug 1995
|
|
STATUS
|
approved
|
|
|
|