login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163831
a(n) is the n-th composite minus the sum of the indices of the primes in its prime factorization.
1
2, 3, 5, 5, 6, 8, 9, 10, 12, 13, 15, 15, 16, 19, 19, 19, 21, 22, 24, 27, 26, 26, 28, 30, 29, 31, 34, 35, 37, 38, 36, 42, 41, 43, 42, 44, 47, 47, 49, 47, 47, 53, 50, 55, 58, 56, 58, 59, 58, 62, 65, 61, 67, 66, 68, 69, 73, 73, 68, 76, 75, 71, 75, 80, 82, 81, 81, 80, 78, 84, 89, 89, 90, 92
OFFSET
1,1
COMMENTS
For the n-th composite c(n) = A002808(n), determine its canonical factorization c(n) = Product_{j} prime(j)^e_j; then A163515(n) = Sum_{j} e_j*j; a(n) = c(n) - A163515(n).
LINKS
FORMULA
a(n) = A002808(n) - A163515(n).
EXAMPLE
A002808(1) = 4 = prime(1)*prime(1), so a(1) = 4 - (1+1) = 2.
A002808(2) = 6 = prime(1)*prime(2), so a(2) = 6 - (1+2) = 3.
A002808(3) = 8 = prime(1)*prime(1)*prime(1), so a(3) = 8 - (1+1+1) = 5.
MAPLE
A002808 := proc(n) local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a) ; end if; end do; end if; end proc:
A163515 := proc(n) local c; c := A002808(n) ; pfs := ifactors(c)[2] ; add( op(2, p)*numtheory[pi](op(1, p)), p=pfs) ; end:
A163831 := proc(n) A002808(n)-A163515(n) ; end: seq(A163831(n), n=1..100) ; # R. J. Mathar, Aug 05 2009
MATHEMATICA
cmsi[n_]:=n-Total[(PrimePi/@(Flatten[Table[#[[1]], #[[2]]]&/@ FactorInteger[ n]]))]; cmsi/@Select[Range[100], CompositeQ] (* Harvey P. Dale, Dec 15 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and corrected by R. J. Mathar, Aug 05 2009
STATUS
approved