login
A014002
Pisot sequence E(8,14), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
1
8, 14, 25, 45, 81, 146, 263, 474, 854, 1539, 2773, 4996, 9001, 16217, 29218, 52642, 94845, 170882, 307878, 554704, 999411, 1800640, 3244215, 5845106, 10531134, 18973956, 34185398, 61591870, 110970141
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Known not to satisfy any linear recurrence.
MATHEMATICA
RecurrenceTable[{a[0]==8, a[1]==14, a[n]==Floor[a[n-1]^2/a[n-2]+1/2]}, a, {n, 30}] (* Harvey P. Dale, Jan 31 2015 *)
CROSSREFS
Sequence in context: A090993 A211525 A241161 * A301787 A029625 A226756
KEYWORD
nonn
AUTHOR
STATUS
approved