login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014001
Pisot sequence E(7,15), a(n)=[ a(n-1)^2/a(n-2)+1/2 ].
1
7, 15, 32, 68, 145, 309, 658, 1401, 2983, 6351, 13522, 28790, 61297, 130508, 277866, 591608, 1259600, 2681830, 5709918, 12157058, 25883745, 55109407, 117334132, 249817577, 531889747, 1132453154, 2411120262, 5133546494, 10929898447, 23270984338, 49546545623
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Known not to satisfy any linear recurrence.
There are linear recurrences which match e.g. the first 21 terms, but after a while they always fail. - N. J. A. Sloane, Aug 07 2016
MAPLE
PisotE := proc(a0, a1, n)
option remember;
if n = 0 then
a0 ;
elif n = 1 then
a1;
else
floor( procname(a0, a1, n-1)^2/procname(a0, a1, n-2)+1/2) ;
end if;
end proc:
A014001 := proc(n)
PisotE(7, 15, n) ;
end proc: # R. J. Mathar, Feb 12 2016
MATHEMATICA
a[0] = 7; a[1] = 15;
a[n_] := a[n] = Floor[a[n-1]^2/a[n-2] + 1/2];
a /@ Range[0, 30] (* Jean-François Alcover, Apr 03 2020 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 7, 15) \\ Colin Barker, Jul 27 2016
CROSSREFS
Sequence in context: A078485 A233297 A159695 * A291642 A271995 A174792
KEYWORD
nonn
AUTHOR
Simon Plouffe, Dec 11 1996
STATUS
approved