login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014003
Pisot sequence E(9,15), a(n) = floor( a(n-1)^2/a(n-2) + 1/2 ).
1
9, 15, 25, 42, 71, 120, 203, 343, 580, 981, 1659, 2806, 4746, 8027, 13576, 22961, 38834, 65680, 111085, 187879, 317761, 537431, 908960, 1537329, 2600093, 4397552, 7437605, 12579264, 21275381, 35983173, 60858545, 102930403, 174086776, 294433954, 497977820
OFFSET
0,1
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305.
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
FORMULA
Known not to satisfy any linear recurrence.
MATHEMATICA
nxt[{a_, b_}]:={b, Floor[b^2/a+1/2]}; NestList[nxt, {9, 15}, 40][[All, 1]] (* Harvey P. Dale, Jan 31 2023 *)
PROG
(PARI) pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 9, 15) \\ Colin Barker, Jul 28 2016
CROSSREFS
Sequence in context: A251415 A109888 A193227 * A333788 A082549 A013569
KEYWORD
nonn
AUTHOR
STATUS
approved