OFFSET
2,3
COMMENTS
Taken from Cohen's table on pages 515-519. The table is indexed by the discriminant d = d(K) = A003658(n) of the real quadratic fields K. The fundamental unit is given as a pair of coordinates (a,b) = (A014000(n), A014046(n)) expressed in terms of the canonical integral basis (1,w) where w = (1+sqrt(d))/2 if d == 1 (mod 4), w = sqrt(d)/2 if d == 0 (mod 4).
The norm of this fundamental unit is A014077(n). The class number h(K) is A003652(n). - N. J. A. Sloane, Jun 14 2013
REFERENCES
H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
LINKS
S. R. Finch, Class number theory [Cached copy, with permission of the author]
Keith Matthews, Finding the fundamental unit of a real quadratic field
EXAMPLE
Here is the start of Cohen's list of fundamental units: [0, 1], [1, 1], [2, 1], [1, 1], [3, 2], [2, 1], [5, 2], [8, 3], [2, 1], [19, 8], [5, 2], [3, 1], [27, 10], [10, 3], [3, 1], [15, 4], [131, 40],[4, 1], [17, 5], [7, 2], [11, 3], [943, 250], [170, 39], [4, 1], [4, 1], [197, 42], [447, 106], [24, 5], [13, 3], [5035, 1138], [9, 2], [5, 1], [37, 8], [118, 25], [703, 146], [11, 2], [1520, 273], [15371, 2968], [79, 15], [35, 6], [1595, 298], [6, 1], [87, 16], [11, 2], [28, 5], [37, 6], [25, 4], [98, 17], [10847, 1856], [6, 1], [13, 2], [3482, 531], [6, 1], [57731, 9384], [604, 97], [24335, 3588], [63, 10], [48, 7], [1637147, 253970], [13, 2], [478763, 72664], ... [N. J. A. Sloane, Jun 14 2013]
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Rains (rains(AT)caltech.edu)
EXTENSIONS
Edited by N. J. A. Sloane, Jun 14 2013
Offset corrected by Jianing Song, Mar 31 2019
STATUS
approved