OFFSET
1,2
LINKS
Seiichi Manyama, Rows n=1..81 of triangle, flattened (Rows 1..29 from Andrew Howroyd)
Wikipedia, Greedy algorithm for Egyptian fractions
EXAMPLE
Triangle begins ({} included for fraction separation):
{1};
{2}, {1};
{3}, {2, 6}, {1};
{4}, {2}, {2, 4}, {1};
{5}, {3, 15}, {2, 10}, {2, 4, 20}, {1};
{6}, {3}, {2}, {2, 6}, {2, 3}, {1};
{7}, {4, 28}, {3, 11, 231}, {2, 14}, {2, 5, 70}, {2, 3, 42}, {1};
{8}, {4}, {3, 24}, {2}, {2, 8}, {2, 4}, {2, 3, 24}, {1};
{9}, {5, 45}, {3}, {3, 9}, {2, 18}, {2, 6}, {2, 4, 36}, {2, 3, 18}, {1};
{10}, {5}, {4, 20}, {3, 15}, {2}, {2, 10}, {2, 5}, {2, 4, 20}, {2, 3, 15}, {1};
{11}, {6, 66}, {4, 44}, {3, 33}, {3, 9, 99}, {2, 22}, {2, 8, 88}, {2, 5, 37, 4070}, {2, 4, 15, 660}, {2, 3, 14, 231}, {1};
PROG
(PARI)
rep(f)={L=List(); while(f<>0, my(t=ceil(1/f)); listput(L, t); f-=1/t); Vec(L)}
row(n)={concat(apply(k->rep(k/n), [1..n]))}
for(n=1, 11, print(row(n))) \\ Andrew Howroyd, Feb 26 2018
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Matthew Campbell, Sep 17 2015
STATUS
approved