login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260619
Arithmetic derivative of hyperfactorial(n).
2
0, 0, 4, 216, 165888, 604800000, 48372940800000, 43156963184025600000, 1392410948543163924480000000, 668916177911197542484208831692800000, 8199617664717905359483850194944000000000000000, 2401010998878767104110478543683244630474752000000000000000
OFFSET
0,3
LINKS
FORMULA
a(n) = A003415(A002109(n)).
a(n) = A002109(n)*A190121(n) (conjectured).
MAPLE
h:= proc(n) option remember; `if`(n=0, 1, h(n-1)* n^n) end:
a:= proc(n) n^n *`if`(n=0, 0,
a(n-1)+h(n-1)*n*add(i[2]/i[1], i=ifactors(n)[2]))
end:
seq(a(n), n=0..15); # Alois P. Heinz, Sep 18 2015
MATHEMATICA
a[n_] := If[n<2, 0, With[{h = Hyperfactorial[n]}, h Sum[{p, e} = pe; e/p, {pe, FactorInteger[h]}]]];
a /@ Range[0, 15] (* Jean-François Alcover, Nov 14 2020 *)
PROG
(Python 3.8+)
from math import prod
from collections import Counter
from sympy import factorint
def A260619(n):
s = prod(i**i for i in range(2, n+1))
return sum(s*e//p for p, e in sum(((lambda x: Counter({k:x[k]*m for k in x}))(factorint(m)) for m in range(2, n+1)), start=Counter({2:0})).items()) if n > 1 else 0 # Chai Wah Wu, Jun 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew Campbell, Sep 17 2015
EXTENSIONS
More terms from Alois P. Heinz, Sep 18 2015
STATUS
approved