This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276487 Denominator of Sum_{k=1..n} 1/k^n. 2
 1, 4, 216, 20736, 777600000, 46656000000, 768464444160000000, 247875891108249600000000, 4098310578334288576512000000000, 413109706296096288512409600000000, 7425496288284402957501110551810198732800000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also denominator of zeta(n) - Hurwitz zeta(n,n+1), where zeta(s) is the Riemann zeta function and Hurwitz zeta(s,a) is the Hurwitz zeta function. Sum_{k>=1} 1/k^n = zeta(n). LINKS Eric Weisstein's World of Mathematics, Harmonic Number Eric Weisstein's World of Mathematics, Riemann Zeta Function Eric Weisstein's World of Mathematics, Hurwitz Zeta Function EXAMPLE 1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ... a(3) = 216, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216. MAPLE A276487:=n->denom(add(1/k^n, k=1..n)): seq(A276487(n), n=1..12); # Wesley Ivan Hurt, Sep 07 2016 MATHEMATICA Table[Denominator[HarmonicNumber[n, n]], {n, 1, 11}] PROG (PARI) a(n) = denominator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016 CROSSREFS Cf. A001008, A002805, A007406, A007407, A031971, A276485 (numerators). Sequence in context: A042325 A091287 A281997 * A269283 A055627 A260619 Adjacent sequences:  A276484 A276485 A276486 * A276488 A276489 A276490 KEYWORD nonn,frac AUTHOR Ilya Gutkovskiy, Sep 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 14:07 EDT 2018. Contains 316236 sequences. (Running on oeis4.)