login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276487
Denominator of Sum_{k=1..n} 1/k^n.
3
1, 4, 216, 20736, 777600000, 46656000000, 768464444160000000, 247875891108249600000000, 4098310578334288576512000000000, 413109706296096288512409600000000, 7425496288284402957501110551810198732800000000000
OFFSET
1,2
COMMENTS
Also denominator of zeta(n) - Hurwitz zeta(n,n+1), where zeta(s) is the Riemann zeta function and Hurwitz zeta(s,a) is the Hurwitz zeta function.
Sum_{k>=1} 1/k^n = zeta(n).
LINKS
Eric Weisstein's World of Mathematics, Harmonic Number
Eric Weisstein's World of Mathematics, Riemann Zeta Function
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function
EXAMPLE
1, 5/4, 251/216, 22369/20736, 806108207/777600000, 47464376609/46656000000, 774879868932307123/768464444160000000, ...
a(3) = 216, because 1/1^3 + 1/2^3 + 1/3^3 = 251/216.
MAPLE
A276487:=n->denom(add(1/k^n, k=1..n)): seq(A276487(n), n=1..12); # Wesley Ivan Hurt, Sep 07 2016
MATHEMATICA
Table[Denominator[HarmonicNumber[n, n]], {n, 1, 11}]
PROG
(PARI) a(n) = denominator(sum(k=1, n, 1/k^n)); \\ Michel Marcus, Sep 06 2016
CROSSREFS
Cf. A001008, A002805, A007406, A007407, A031971, A276485 (numerators).
Sequence in context: A091287 A338282 A281997 * A269283 A055627 A260619
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Sep 05 2016
STATUS
approved