login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007407 a(n) = denominator of Sum_{k=1..n} 1/k^2.
(Formerly M3661)
40
1, 4, 36, 144, 3600, 3600, 176400, 705600, 6350400, 1270080, 153679680, 153679680, 25971865920, 25971865920, 129859329600, 519437318400, 150117385017600, 150117385017600, 54192375991353600, 10838475198270720, 221193371393280 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..1152 (terms 1..200 from T. D. Noe)

D. Y. Savio, E. A. Lamagna and S.-M. Liu, Summation of harmonic numbers, pp. 12-20 of E. Kaltofen and S. M. Watt, editors, Computers and Mathematics, Springer-Verlag, NY, 1989.

FORMULA

a(n) = denominator of (Pi^2)/6 - zeta(2, x). - Artur Jasinski, Mar 03 2010

a(n) = A001044(n) / gcd(A001819(n), A001044(n)). - Daniel Suteu, Dec 25 2016

EXAMPLE

1/1^2 + 1/2^2 + 1/3^2 = 1/1 + 1/4 + 1/9 = 49/36, so a(3) = 36. - Jon E. Schoenfield, Dec 26 2014

MAPLE

ZL:=n->sum(1/i^2, i=2..n): a:=n->floor(denom(ZL(n))): seq(a(n), n=1..21); # Zerinvary Lajos, Mar 28 2007

MATHEMATICA

s=0; lst={}; Do[s+=n^2/n^4; AppendTo[lst, Denominator[s]], {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)

Table[Denominator[Pi^2/6 - Zeta[2, x]], {x, 1, 22}] (* Artur Jasinski, Mar 03 2010 *)

Denominator[Accumulate[1/Range[30]^2]] (* Harvey P. Dale, Nov 08 2012 *)

PROG

(Haskell)

import Data.Ratio ((%), denominator)

a007407 n = a007407_list !! (n-1)

a007407_list = map denominator $

                   scanl1 (+) $ map (1 %) $ tail a000290_list

-- Reinhard Zumkeller, Jul 06 2012

(PARI) a(n)=denominator(sum(k=1, n, 1/k^2)) \\ Charles R Greathouse IV, Nov 20 2012

CROSSREFS

Cf. A007406, A000290, A035166.

Sequence in context: A103931 A068589 A120077 * A051418 A069046 A065886

Adjacent sequences:  A007404 A007405 A007406 * A007408 A007409 A007410

KEYWORD

nonn,easy,frac,nice

AUTHOR

N. J. A. Sloane, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 12:25 EST 2018. Contains 299387 sequences. (Running on oeis4.)