login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Arithmetic derivative of hyperfactorial(n).
2

%I #31 Jun 13 2022 15:16:26

%S 0,0,4,216,165888,604800000,48372940800000,43156963184025600000,

%T 1392410948543163924480000000,668916177911197542484208831692800000,

%U 8199617664717905359483850194944000000000000000,2401010998878767104110478543683244630474752000000000000000

%N Arithmetic derivative of hyperfactorial(n).

%H Alois P. Heinz, <a href="/A260619/b260619.txt">Table of n, a(n) for n = 0..37</a>

%F a(n) = A003415(A002109(n)).

%F a(n) = A002109(n)*A190121(n) (conjectured).

%p h:= proc(n) option remember; `if`(n=0, 1, h(n-1)* n^n) end:

%p a:= proc(n) n^n *`if`(n=0, 0,

%p a(n-1)+h(n-1)*n*add(i[2]/i[1], i=ifactors(n)[2]))

%p end:

%p seq(a(n), n=0..15); # _Alois P. Heinz_, Sep 18 2015

%t a[n_] := If[n<2, 0, With[{h = Hyperfactorial[n]}, h Sum[{p, e} = pe; e/p, {pe, FactorInteger[h]}]]];

%t a /@ Range[0, 15] (* _Jean-François Alcover_, Nov 14 2020 *)

%o (Python 3.8+)

%o from math import prod

%o from collections import Counter

%o from sympy import factorint

%o def A260619(n):

%o s = prod(i**i for i in range(2,n+1))

%o return sum(s*e//p for p,e in sum(((lambda x: Counter({k:x[k]*m for k in x}))(factorint(m)) for m in range(2,n+1)),start=Counter({2:0})).items()) if n > 1 else 0 # _Chai Wah Wu_, Jun 12 2022

%Y Cf. A002109, A003415, A068327.

%K nonn

%O 0,3

%A _Matthew Campbell_, Sep 17 2015

%E More terms from _Alois P. Heinz_, Sep 18 2015