login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190121
Partial sums of the arithmetic derivative function A003415.
8
0, 1, 2, 6, 7, 12, 13, 25, 31, 38, 39, 55, 56, 65, 73, 105, 106, 127, 128, 152, 162, 175, 176, 220, 230, 245, 272, 304, 305, 336, 337, 417, 431, 450, 462, 522, 523, 544, 560, 628, 629, 670, 671, 719, 758, 783, 784, 896, 910, 955, 975, 1031, 1032, 1113, 1129
OFFSET
1,3
COMMENTS
See A229523 for a(10^n). - M. F. Hasler, Sep 25 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull., Vol. 4, No. 2 (May 1961), pp. 117-122.
FORMULA
a(n)-> ~ 0.374*n^2 as n-> oo [Barbeau] (note: 1+2+3+4+5 ...-> ~ 1/2*n^2; the similarity stands also for higher power of the terms of sum). - Giorgio Balzarotti, Nov 14 2013
a(n) ~ c * n^2, where c = (1/2) * Sum_{p prime} 1/(p*(p-1)) = A136141 / 2 = 0.3865783345... . This constant was given by Barbeau (1961) but with the wrong value 0.374. - Amiram Eldar, Oct 06 2023
EXAMPLE
1'+2'+3'+4'+5' = 0+1+1+4+1 = 7 -> a(5) = 7.
MAPLE
der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]):
seq(add(der(i), i=1..j), j=1..100);
MATHEMATICA
d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Table[d[n], {n, 1, 55}] // Accumulate (* Jean-François Alcover, Feb 21 2014 *)
A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[A003415[k], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
PROG
(PARI) s=0; A190121=vector(199, n, s+=A003415(n))
(PARI) A190121(n)=sum(k=1, n, A003415(k)) \\ M. F. Hasler, Sep 26 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Giorgio Balzarotti, May 04 2011
STATUS
approved