login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190123
Expansion of e.g.f.: 1/(1-tan(sin(x))).
1
1, 1, 2, 7, 32, 177, 1184, 9175, 81280, 810081, 8967168, 109200551, 1450641408, 20876239633, 323542851584, 5372445971063, 95157141241856, 1790769169786049, 35682993123753984, 750523142329023815, 16616642326426025984, 386288476226459349361, 9407703499451286945792
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{m=1..n} Sum_{k=m..n} (((-1)^(k-m)+1)*(Sum_{j=m..k} binomial(j-1,m-1)*j!*2^(k-j-1)*stirling2(k,j)*(-1)^((m+k)/2+j),j,m,k))*((-1)^(n-k)+1)*Sum_{i=0..k/2} (2*i-k)^n*binomial(k,i)*(-1)^((n+k)/2-i)))/(2^k*k!))), n>0, a(0)=1.
MAPLE
a:=series(1/(1-tan(sin(x))), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 27 2019
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[1/(1 - Tan[Sin[x]]), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Dec 29 2017 *)
PROG
(Maxima)
a(n):=sum(sum((((-1)^(k-m)+1)*(sum(binomial(j-1, m-1)*j!*2^(k-j-1)*stirling2(k, j)*(-1)^((m+k)/2+j), j, m, k))*((-1)^(n-k)+1)*sum((2*i-k)^n*binomial(k, i)*(-1)^((n+k)/2-i), i, 0, k/2))/(2^k*k!), k, m, n), m, 1, n);
(PARI) x='x+O('x^30); Vec(serlaplace(1/(1-tan(sin(x))))) \\ G. C. Greubel, Dec 29 2017
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1 - Tan(Sin(x))) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Nov 07 2018
CROSSREFS
Sequence in context: A277359 A005362 A059439 * A006014 A121555 A265165
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, May 04 2011
STATUS
approved