login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121555
Number of 1-cell columns in all deco polyominoes of height n.
2
1, 2, 7, 32, 178, 1164, 8748, 74304, 704016, 7362720, 84255840, 1047358080, 14054739840, 202514376960, 3118666924800, 51119166873600, 888640952371200, 16330301780889600, 316322420114534400, 6441691128993792000, 137586770616637440000, 3075566993729556480000
OFFSET
1,2
COMMENTS
A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
It appears that a(n) is a function of the harmonic numbers. [Gary Detlefs, Aug 13 2010]
LINKS
E. Barcucci, A. Del Lungo, and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
FORMULA
a(n) = Sum_{k=0..n} k*A121554(n, k).
a(1) = 1, a(n) = n*a(n-1)+(n-2)!*(n-2) for n >= 2.
a(n) = n!*(h(n) - (n-1)/n), where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Aug 13 2010
(-n+3)*a(n) + (2*n^2-7*n+4)*a(n-1) - (n-1)*(n-2)^2*a(n-2) = 0. - R. J. Mathar, Jul 15 2017
a(n) = abs(Stirling1(n + 1, 2)) - (n - 1)*(n - 1)!. - Detlef Meya, Apr 09 2024
EXAMPLE
a(2)=2 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 2 columns with exactly 1 cell.
MAPLE
a[1]:=1: for n from 2 to 23 do a[n]:=n*a[n-1]+(n-2)!*(n-2) od:
seq(a[n], n = 1..23);
# Alternative:
a := n -> (n - 1)! * (n*harmonic(n) - (n - 1)):
seq(a(n), n = 1..22); # Peter Luschny, Apr 09 2024
MATHEMATICA
a[n_]:=Abs[StirlingS1[n+1, 2]]-(n-1)*(n-1)!; Flatten[Table[a[n], {n, 1, 22}]] (* Detlef Meya, Apr 09 2024 *)
CROSSREFS
Cf. A121554.
Sequence in context: A059439 A190123 A006014 * A265165 A351813 A301465
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 08 2006
STATUS
approved