login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121553
Total area of all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
1
1, 4, 20, 122, 874, 7164, 65988, 674064, 7558416, 92276640, 1218255840, 17293495680, 262656570240, 4250077896960, 72992067321600, 1326101675673600, 25410150701107200, 512158576546713600, 10832221231772774400
OFFSET
1,2
COMMENTS
a(n)=Sum(k*A121552(n,k), k=n..1+n(n-1)/2).
REFERENCES
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
a(1)=1; a(n)=n*a(n-1)+(n-1)!*[1+n(n-1)/2] for n>=2 (see Barcucci et al. reference, p. 34).
a(n)=n![n(n-1)/4 + 1/1 + 1/2 + ... +1/n]. - Emeric Deutsch, Apr 06 2008
Conjecture D-finite with recurrence a(n) +(-2*n-3)*a(n-1) +(n^2+4*n-3)*a(n-2) +2*(-n^2+n+3)*a(n-3) +2*(n-3)^2*a(n-4)=0. - R. J. Mathar, Jul 22 2022
MAPLE
a[1]:=1: for n from 2 to 22 do a[n]:=n*a[n-1]+(n-1)!*(1+n*(n-1)/2) od: seq(a[n], n=1..22);
CROSSREFS
Cf. A121552.
Sequence in context: A020118 A009351 A379202 * A067116 A347339 A067121
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 08 2006
STATUS
approved