OFFSET
0,1
COMMENTS
By computing all Ramanujan primes less than 10^9, we find that about 9 decimal places of the sum should be correct: 0.265563275 (truncated, not rounded). The following table shows the number of Ramanujan primes between powers of 10 and the sum of the squared reciprocals of those primes.
1 1 0.25000000000000000
2 9 0.01477600368240514
3 62 0.00072814919125266
4 487 0.00005457480850461
5 3900 0.00000417097012694
6 32501 0.00000034491619098
7 279106 0.00000002943077197
8 2444255 0.00000000255829675
9 21731345 0.00000000022619762
Total: 0.26556327578374667 - T. D. Noe, May 05 2011
From Jonathan Sondow, May 06 2011: (Start)
Since R_n > n, the bound Sum_{n > N} 1/(R_n)^2 < 1/N holds, by the integral test. Taking N = #{R_n < 10^9} = 24491666, the error is < 4.09 x 10^-8.
Using the stronger inequality R_n > 2n log 2n (from "Ramanujan primes and Bertrand's postulate"), the error is actually < 2.94 * 10^-11. So the sum 0.265563275... is correct. The next digit is either 7 or 8. (End)
A190124 and A085548 (Prime Zeta(2)) converge by comparison with A013661 (Zeta(2)), which converges by the integral test. As real numbers, A190124 < A085548 < A013661. - Robert G. Wilson v, May 08 2011
Prime Zeta(2) - (this constant) = 0.4522474200 - 0.2655632757 = 0.186684144 (truncated, not rounded). - John W. Nicholson, May 24 2011
From Dana Jacobsen, Jul 27 2015: (Start)
Calculating more Ramanujan primes, we can expand on the earlier table, which should give us more terms.
1 1 0.25000000000000000000 0.25000000000000000000
2 9 0.26477600368240513652 0.01477600368240513652
3 62 0.26550415287365779725 0.00072814919125266073
4 487 0.26555872768216240627 0.00005457480850460902
5 3900 0.26556289865228934691 0.00000417097012694064
6 32501 0.26556324356848032844 0.00000034491619098153
7 279106 0.26556327299925229431 0.00000002943077196587
8 2444255 0.26556327555754904279 0.00000000255829674847
9 21731345 0.26556327578374665897 0.00000000022619761618
10 195606622 0.26556327580402332096 0.00000000002027666198
11 1778301947 0.26556327580586060071 0.00000000000183727975
12 16301375641 0.26556327580602856045 0.00000000000016795974. (End)
LINKS
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009), 630-635.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011.
EXAMPLE
0.265563275...
PROG
(Perl)
use ntheory ":all";
use Math::MPFR qw/Rmpfr_get_str Rmpfr_set_default_prec Rmpfr_printf/;
Rmpfr_set_default_prec(500);
my $limit = shift || 9;
my($maxexp, $sum) = (9, Math::MPFR->new(0));
for my $e (1..$limit) {
my($numrp, $psum) = (0, Math::MPFR->new(0));
if ($e <= $maxexp) {
my $rp = ramanujan_primes(10**($e-1), 10**$e);
$numrp += scalar @$rp;
$psum += (1/Math::MPFR->new("$_"))**2 for @$rp;
} else {
for my $k (10**($e-$maxexp-1) .. 10**($e-$maxexp)-1) {
my $rp = ramanujan_primes($k*10**$maxexp, ($k+1)*10**$maxexp);
$numrp += scalar @$rp;
$psum += (1/Math::MPFR->new("$_"))**2 for @$rp;
}
}
Rmpfr_printf("%2d ", $e);
Rmpfr_printf("%14lu ", $numrp);
Rmpfr_printf("%.20Rf ", $sum += $psum);
Rmpfr_printf("%.20Rf\n", $psum);
} # Dana Jacobsen, Jul 27 2015
CROSSREFS
KEYWORD
AUTHOR
John W. Nicholson, May 04 2011
EXTENSIONS
a(10) and a(11) (from data above by Dana Jacobsen_, Jul 27 2015) added by John W. Nicholson, Dec 17 2015
STATUS
approved