login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190124
Decimal expansion of Ramanujan prime constant: Sum_{n>=1} (1/R_n)^2, where R_n is the n-th Ramanujan prime, A104272(n).
3
2, 6, 5, 5, 6, 3, 2, 7, 5, 8, 0
OFFSET
0,1
COMMENTS
By computing all Ramanujan primes less than 10^9, we find that about 9 decimal places of the sum should be correct: 0.265563275 (truncated, not rounded). The following table shows the number of Ramanujan primes between powers of 10 and the sum of the squared reciprocals of those primes.
1 1 0.25000000000000000
2 9 0.01477600368240514
3 62 0.00072814919125266
4 487 0.00005457480850461
5 3900 0.00000417097012694
6 32501 0.00000034491619098
7 279106 0.00000002943077197
8 2444255 0.00000000255829675
9 21731345 0.00000000022619762
Total: 0.26556327578374667 - T. D. Noe, May 05 2011
From Jonathan Sondow, May 06 2011: (Start)
Since R_n > n, the bound Sum_{n > N} 1/(R_n)^2 < 1/N holds, by the integral test. Taking N = #{R_n < 10^9} = 24491666, the error is < 4.09 x 10^-8.
Using the stronger inequality R_n > 2n log 2n (from "Ramanujan primes and Bertrand's postulate"), the error is actually < 2.94 * 10^-11. So the sum 0.265563275... is correct. The next digit is either 7 or 8. (End)
A190124 and A085548 (Prime Zeta(2)) converge by comparison with A013661 (Zeta(2)), which converges by the integral test. As real numbers, A190124 < A085548 < A013661. - Robert G. Wilson v, May 08 2011
Prime Zeta(2) - (this constant) = 0.4522474200 - 0.2655632757 = 0.186684144 (truncated, not rounded). - John W. Nicholson, May 24 2011
From Dana Jacobsen, Jul 27 2015: (Start)
Calculating more Ramanujan primes, we can expand on the earlier table, which should give us more terms.
1 1 0.25000000000000000000 0.25000000000000000000
2 9 0.26477600368240513652 0.01477600368240513652
3 62 0.26550415287365779725 0.00072814919125266073
4 487 0.26555872768216240627 0.00005457480850460902
5 3900 0.26556289865228934691 0.00000417097012694064
6 32501 0.26556324356848032844 0.00000034491619098153
7 279106 0.26556327299925229431 0.00000002943077196587
8 2444255 0.26556327555754904279 0.00000000255829674847
9 21731345 0.26556327578374665897 0.00000000022619761618
10 195606622 0.26556327580402332096 0.00000000002027666198
11 1778301947 0.26556327580586060071 0.00000000000183727975
12 16301375641 0.26556327580602856045 0.00000000000016795974. (End)
LINKS
J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly 116 (2009), 630-635.
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011.
EXAMPLE
0.265563275...
PROG
(Perl)
use ntheory ":all";
use Math::MPFR qw/Rmpfr_get_str Rmpfr_set_default_prec Rmpfr_printf/;
Rmpfr_set_default_prec(500);
my $limit = shift || 9;
my($maxexp, $sum) = (9, Math::MPFR->new(0));
for my $e (1..$limit) {
my($numrp, $psum) = (0, Math::MPFR->new(0));
if ($e <= $maxexp) {
my $rp = ramanujan_primes(10**($e-1), 10**$e);
$numrp += scalar @$rp;
$psum += (1/Math::MPFR->new("$_"))**2 for @$rp;
} else {
for my $k (10**($e-$maxexp-1) .. 10**($e-$maxexp)-1) {
my $rp = ramanujan_primes($k*10**$maxexp, ($k+1)*10**$maxexp);
$numrp += scalar @$rp;
$psum += (1/Math::MPFR->new("$_"))**2 for @$rp;
}
}
Rmpfr_printf("%2d ", $e);
Rmpfr_printf("%14lu ", $numrp);
Rmpfr_printf("%.20Rf ", $sum += $psum);
Rmpfr_printf("%.20Rf\n", $psum);
} # Dana Jacobsen, Jul 27 2015
CROSSREFS
KEYWORD
nonn,cons,more
AUTHOR
John W. Nicholson, May 04 2011
EXTENSIONS
a(10) and a(11) (from data above by Dana Jacobsen_, Jul 27 2015) added by John W. Nicholson, Dec 17 2015
STATUS
approved