login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190120
a(n) = Sum_{k=1..n} lcm(k,k')/gcd(k,k'), where n' is arithmetic derivative of n.
2
0, 2, 5, 6, 11, 41, 48, 54, 60, 130, 141, 153, 166, 292, 412, 414, 431, 473, 492, 522, 732, 1018, 1041, 1107, 1117, 1507, 1508, 1564, 1593, 2523, 2554, 2564, 3026, 3672, 4092, 4107, 4144, 4942, 5566, 5736, 5777, 7499, 7542, 7674, 7869, 9019, 9066, 9087, 9101, 9191
OFFSET
1,2
COMMENTS
Use lcm(1,0)=0 and gcd(1,0)=1.
LINKS
EXAMPLE
lcm(1,1')/gcd(1,1')+lcm(2,2')/gcd(2,2')+lcm(3,3')/gcd(3,3')=0+2/1+3/1=5 ->a(3)=5.
MAPLE
der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]):
seq(add(lcm(der(i), i)/gcd(der(i), i), i=1..n), n=1..50);
MATHEMATICA
A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]];
Table[Sum[LCM[k, A003415[k]]/GCD[k, A003415[k]], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)
PROG
(PARI) {A003415(n, f)=sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i])};
for(n=1, 50, print1(sum(k=1, n, lcm(k, A003415(k))/gcd(k, A003145(k))), ", ")) \\ G. C. Greubel, Dec 29 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Giorgio Balzarotti, May 04 2011
STATUS
approved