OFFSET
1,3
COMMENTS
No integers congruent to {3,4,8,9} mod 10. - Zak Seidov, Nov 14 2011
If k is not in this sequence, then A200440 gives the least modulus which proves that there cannot be a solution to k = 6^x - y^2. - M. F. Hasler, Nov 18 2011
LINKS
Hugo Pfoertner, Table of n, a(n) for n = 1..513
MATHEMATICA
max = 10^5; Clear[f]; f[m_] := f[m] = Select[Table[6^x - y^2, {x, 0, m}, {y, 0, Ceiling[6^(x/2)]}] // Flatten // Union, 0 <= # <= max &]; f[1]; f[m = 2]; While[f[m] != f[m - 1], m++]; Print["m = ", m]; A051217 = f[m] (* Jean-François Alcover, May 13 2017 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved