login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051217
Nonnegative numbers of the form 6^x - y^2.
5
0, 1, 2, 5, 6, 11, 20, 27, 32, 35, 36, 47, 71, 72, 95, 116, 135, 140, 152, 167, 180, 191, 200, 207, 212, 215, 216, 272, 335, 380, 396, 431, 455, 512, 551, 567, 620, 671, 720, 767, 812, 855, 860, 887, 896, 935, 972, 1007, 1040, 1052, 1071, 1100, 1127, 1152
OFFSET
1,3
COMMENTS
No integers congruent to {3,4,8,9} mod 10. - Zak Seidov, Nov 14 2011
If k is not in this sequence, then A200440 gives the least modulus which proves that there cannot be a solution to k = 6^x - y^2. - M. F. Hasler, Nov 18 2011
LINKS
MATHEMATICA
max = 10^5; Clear[f]; f[m_] := f[m] = Select[Table[6^x - y^2, {x, 0, m}, {y, 0, Ceiling[6^(x/2)]}] // Flatten // Union, 0 <= # <= max &]; f[1]; f[m = 2]; While[f[m] != f[m - 1], m++]; Print["m = ", m]; A051217 = f[m] (* Jean-François Alcover, May 13 2017 *)
PROG
(PARI) is_A051217(n) = !A200440(n) \\ M. F. Hasler, Nov 18 2011
CROSSREFS
Cf. A201122.
Sequence in context: A373243 A135476 A255310 * A275522 A110975 A190120
KEYWORD
nonn
STATUS
approved