This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003145 Positions of letter b in the tribonacci word abacabaabacababac... generated by a->ab, b->ac, c->a (cf. A092782). (Formerly M1571) 50
 2, 6, 9, 13, 15, 19, 22, 26, 30, 33, 37, 39, 43, 46, 50, 53, 57, 59, 63, 66, 70, 74, 77, 81, 83, 87, 90, 94, 96, 100, 103, 107, 111, 114, 118, 120, 124, 127, 131, 134, 138, 140, 144, 147, 151, 155, 158, 162, 164, 168, 171, 175, 179, 182, 186, 188, 192, 195, 199, 202, 206, 208 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A003144, A003145, A003146 may be defined as follows. Consider the map psi: a -> ab, b -> ac, c -> a. The image (or trajectory) of a under repeated application of this map is the infinite word a, b, a, c, a, b, a, a, b, a, c, a, b, a, b, a, c, ... (setting a = 1, b = 2, c = 3 gives A092782). The indices of a, b, c give respectively A003144, A003145, A003146. - Philippe Deléham, Feb 27 2009 The infinite word may also be defined as the limit S_oo where S_1 = a, S_n = psi(S_{n-1}). Or, by S_1 = a, S_2 = ab, S_3 = abac, and thereafter S_n = S_{n-1} S_{n-2} S_{n-3}. It is the unique word such that S_oo = psi(S_oo). Also indices of b in the sequence closed under a -> abac, b -> aba, c -> ab; starting with a(1) = a. - Philippe Deléham, Apr 16 2004 Theorem: A number m is in this sequence iff the tribonacci representation of m-1 ends with 01. [Duchene and Rigo, Remark 2.5] - N. J. A. Sloane, Mar 02 2019 REFERENCES Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5;  MSRI Publications, Vol. 70 (2017), pages 101-153. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..10609 Elena Barcucci, Luc Belanger and Srecko Brlek, On tribonacci sequences, Fib. Q., 42 (2004), 314-320. L. Carlitz, R. Scoville and V. E. Hoggatt, Jr., Fibonacci representations of higher order, Fib. Quart., 10 (1972), 43-69. The present sequence is called b. F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, arXiv:1907.09120, July 2019 Eric Duchêne and Michel Rigo, A morphic approach to combinatorial games: the Tribonacci case. RAIRO - Theoretical Informatics and Applications, 42, 2008, pp 375-393. doi:10.1051/ita:2007039. [Also available from Numdam] A. J. Hildebrand, Junxian Li, Xiaomin Li, Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018. Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018. FORMULA It appears that a(n) = floor(n*t^2) + eps for all n, where t is the tribonacci constant A058265 and eps is 0, 1, or 2. See A276799. - N. J. A. Sloane, Oct 28 2016. This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019 MAPLE M:=17; S[1]:=`a`; S[2]:=`ab`; S[3]:=`abac`; for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od: t0:=S[M]: l:=length(t0); t1:=[]; for i from 1 to l do if substring(t0, i..i) = `b` then t1:=[op(t1), i]; fi; od: # N. J. A. Sloane MATHEMATICA StringPosition[SubstitutionSystem[{"a" -> "ab", "b" -> "ac", "c" -> "a"}, "b", {#}][[1]], "b"][[All, 1]] &@9 (* Michael De Vlieger, Mar 30 2017, Version 10.2, after JungHwan Min at A003144 *) CROSSREFS Cf. A003144, A003146, A080843, A092782, A058265, A276799, A276800, A276794, A276797. First differences give A276789. A278040 (subtract 1 from each term, and use offset 1). For tribonacci representations of numbers see A278038. Sequence in context: A236760 A086562 A083789 * A184621 A184821 A292659 Adjacent sequences:  A003142 A003143 A003144 * A003146 A003147 A003148 KEYWORD nonn AUTHOR EXTENSIONS More terms from Philippe Deléham, Apr 16 2004 Corrected by T. D. Noe and N. J. A. Sloane, Nov 01 2006 Entry revised by N. J. A. Sloane, Oct 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 08:53 EST 2019. Contains 329788 sequences. (Running on oeis4.)