OFFSET
0,7
COMMENTS
a(n+1) = z_A(n), the number of entries of A278040 (called A number in the W. Lang given there) not exceeding n, for n >= 1 and z_A(-1) := 0. - Wolfdieter Lang, Dec 06 2018
Conjecture: A140102(n) - n = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..10000
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
Jeffrey Shallit, Some Tribonacci conjectures, arXiv:2210.03996 [math.CO], 2022.
FORMULA
MAPLE
M:=12;
S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;
for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
t0:=S[M]: # has 927 terms of tribonacci ternary word A080843
# get numbers of 0's, 1's, 2's
N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:
L:=length(t0);
for i from 1 to L do
js := substring(t0, i..i);
j:=convert(js, decimal, 10);
if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;
N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];
od:
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 28 2016
STATUS
approved