login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276798 Partial sums of A276791. 11
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

a(n+1) - 1 = z_C(n), where z_C(n) is the number of C numbers A276798 not exceeding n, for n >= 0, and z_C(-1) = 0. - Wolfdieter Lang, Dec 05 2018

Conjecture: 3*n - A140101(n) = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..10000

F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.

Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.

Jeffrey Shallit, Some Tribonacci conjectures, arXiv:2210.03996 [math.CO], 2022.

FORMULA

a(n) = Sum_{k=0..n} A276791(k), for n >= 0.

a(n) = n + 1 - (A276796(n) + A276797(n).

a(n) = 2*n + 1 - B(n), where B(n) = A278039(n), n >= 0. For a proof see the comment on z_C and Proposition 7, eq. 43, of the W. Lang link given in A080843. - Wolfdieter Lang, Dec 05 2018

MAPLE

M:=12;

S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;

for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:

t0:=S[M]: # has 927 terms of tribonacci ternary word A080843

# get numbers of 0's, 1's, 2's

N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:

L:=length(t0);

for i from 1 to L do

js := substring(t0, i..i);

j:=convert(js, decimal, 10);

if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;

N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];

od:

N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018

CROSSREFS

A276793(n) + A276794(n) + A276791(n) = 1;

A276796(n) + A276797(n) + A276798(n) = n + 1.

Cf. A276798, A278039.

Sequence in context: A052374 A003074 A279222 * A067100 A296237 A074802

Adjacent sequences: A276795 A276796 A276797 * A276799 A276800 A276801

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 17:06 EDT 2023. Contains 361528 sequences. (Running on oeis4.)