|
|
A279222
|
|
Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)).
|
|
6
|
|
|
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 13, 15, 16, 16, 16, 16, 16, 17, 19, 20, 20, 20, 20, 20, 21, 23, 24, 25, 25, 25, 25, 26, 28, 30, 31, 31, 31, 31, 32, 34, 36, 37, 37, 37, 37, 38, 40, 42, 43, 44, 44, 44
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
Number of partitions of n into nonzero hexagonal pyramidal numbers (A002412).
|
|
LINKS
|
Table of n, a(n) for n=0..90.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number
Index to sequences related to pyramidal numbers
Index entries for related partition-counting sequences
|
|
FORMULA
|
G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)).
|
|
EXAMPLE
|
a(8) = 2 because we have [7, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
|
|
MATHEMATICA
|
nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (4 k - 1)/6)), {k, 1, nmax}], {x, 0, nmax}], x]
|
|
CROSSREFS
|
Cf. A002412, A068980, A279220, A279221, A279223, A279224.
Sequence in context: A052364 A052374 A003074 * A276798 A067100 A296237
Adjacent sequences: A279219 A279220 A279221 * A279223 A279224 A279225
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Dec 08 2016
|
|
STATUS
|
approved
|
|
|
|