login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279222 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)). 6
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 8, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 13, 15, 16, 16, 16, 16, 16, 17, 19, 20, 20, 20, 20, 20, 21, 23, 24, 25, 25, 25, 25, 26, 28, 30, 31, 31, 31, 31, 32, 34, 36, 37, 37, 37, 37, 38, 40, 42, 43, 44, 44, 44 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Number of partitions of n into nonzero hexagonal pyramidal numbers (A002412).

LINKS

Table of n, a(n) for n=0..90.

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

Eric Weisstein's World of Mathematics, Hexagonal Pyramidal Number

Index to sequences related to pyramidal numbers

Index entries for related partition-counting sequences

FORMULA

G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(4*k-1)/6)).

EXAMPLE

a(8) = 2 because we have [7, 1] and [1, 1, 1, 1, 1, 1, 1, 1].

MATHEMATICA

nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (4 k - 1)/6)), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A002412, A068980, A279220, A279221, A279223, A279224.

Sequence in context: A052364 A052374 A003074 * A276798 A067100 A296237

Adjacent sequences: A279219 A279220 A279221 * A279223 A279224 A279225

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Dec 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 00:24 EDT 2023. Contains 361511 sequences. (Running on oeis4.)