login
A276800
Decimal expansion of t^2, where t is the tribonacci constant A058265.
14
3, 3, 8, 2, 9, 7, 5, 7, 6, 7, 9, 0, 6, 2, 3, 7, 4, 9, 4, 1, 2, 2, 7, 0, 8, 5, 3, 6, 4, 5, 5, 0, 3, 4, 5, 8, 6, 9, 4, 9, 3, 8, 2, 0, 4, 3, 7, 4, 8, 5, 7, 6, 1, 8, 2, 0, 1, 9, 5, 6, 2, 6, 7, 7, 2, 3, 5, 3, 7, 1, 8, 9, 6, 0, 0, 9, 9, 4, 0, 2, 9, 2, 2, 2, 3, 5, 9, 3, 3, 3, 4, 0, 0, 4, 3, 6, 6, 1, 3, 9, 6, 0, 4, 1, 0, 0, 6
OFFSET
1,1
COMMENTS
The minimal polynomial of this constant is x^3 - 3*x^2 - x - 1, and it is its unique real root. - Amiram Eldar, May 27 2023
EXAMPLE
3.38297576790623749412270853645503458694938204374857618201956267723537...
MATHEMATICA
A276800L[n_] := RealDigits[(1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^2, 10, n][[1]]; A276800L[107] (* JungHwan Min, Nov 06 2016 *)
RealDigits[x /. FindRoot[x^3 - 3*x^2 - x - 1, {x, 3}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 27 2023 *)
PROG
(PARI) polrootsreal(x^3-3*x^2-x-1)[1] \\ Charles R Greathouse IV, Aug 21 2023
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Oct 28 2016
STATUS
approved