login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of the arithmetic derivative function A003415.
8

%I #38 Oct 06 2023 10:53:24

%S 0,1,2,6,7,12,13,25,31,38,39,55,56,65,73,105,106,127,128,152,162,175,

%T 176,220,230,245,272,304,305,336,337,417,431,450,462,522,523,544,560,

%U 628,629,670,671,719,758,783,784,896,910,955,975,1031,1032,1113,1129

%N Partial sums of the arithmetic derivative function A003415.

%C See A229523 for a(10^n). - _M. F. Hasler_, Sep 25 2013

%H G. C. Greubel, <a href="/A190121/b190121.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Vincenzo Librandi)

%H E. J. Barbeau, <a href="https://doi.org/10.4153/CMB-1961-013-0">Remark on an arithmetic derivative</a>, Canad. Math. Bull., Vol. 4, No. 2 (May 1961), pp. 117-122.

%F a(n)-> ~ 0.374*n^2 as n-> oo [Barbeau] (note: 1+2+3+4+5 ...-> ~ 1/2*n^2; the similarity stands also for higher power of the terms of sum). - _Giorgio Balzarotti_, Nov 14 2013

%F a(n) ~ c * n^2, where c = (1/2) * Sum_{p prime} 1/(p*(p-1)) = A136141 / 2 = 0.3865783345... . This constant was given by Barbeau (1961) but with the wrong value 0.374. - _Amiram Eldar_, Oct 06 2023

%e 1'+2'+3'+4'+5' = 0+1+1+4+1 = 7 -> a(5) = 7.

%p der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):

%p seq(add(der(i),i=1..j),j=1..100);

%t d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; Table[d[n], {n, 1, 55}] // Accumulate (* _Jean-François Alcover_, Feb 21 2014 *)

%t A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[A003415[k], {k, 1, n}], {n, 1, 50}] (* _G. C. Greubel_, Dec 29 2017 *)

%o (PARI) s=0; A190121=vector(199,n,s+=A003415(n))

%o (PARI) A190121(n)=sum(k=1,n,A003415(k)) \\ _M. F. Hasler_, Sep 26 2013

%Y Cf. A003415, A136141, A229523.

%K nonn,easy

%O 1,3

%A _Giorgio Balzarotti_, May 04 2011