login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229523
Partial sum of the arithmetic derivative A003415 (A190121) up to 10^n.
2
0, 38, 3906, 386517, 38671110, 3865941752, 386580463478, 38657862140521, 3865783461518530, 386578337105347684, 38657833484501788407, 3865783345588492717623, 386578334529872234861944, 38657833452536035472588254, 3865783345249467526546175599
OFFSET
0,2
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 0..17
E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull., Vol. 4, No. 2 (May 1961), pp. 117-122.
FORMULA
a(n) = A190121(10^n).
It seems that a(n)/10^(2n-1) -> 3.865783... as n -> oo.
Note: A190121 ~ 0.374... * n^2 [Barbeau]. - Giorgio Balzarotti, Oct 15 2013
a(n) ~ 0.386578334524897563932183729927 * 100^n. - Hiroaki Yamanouchi, Jul 09 2014
The constant is (1/2) * Sum_{p prime} 1/(p*(p-1)) = A136141 / 2 = 0.3865783345... . This constant was given by Barbeau (1961) but with the wrong value 0.374. - Amiram Eldar, Oct 06 2023
PROG
(PARI) s=0; for(k=0, 8, for(n=10^(k-1)+1, 10^k, s+=A003415(n)); print1(s", ")); s
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
M. F. Hasler, Sep 25 2013
EXTENSIONS
a(8)-a(10) from Donovan Johnson, Sep 25 2013
a(11)-a(12) from Giovanni Resta, Mar 13 2014
a(13)-a(14) from Hiroaki Yamanouchi, Jul 09 2014
STATUS
approved