login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325262
Number of integer partitions of n whose omega-sequence does not cover an initial interval of positive integers.
4
0, 0, 0, 1, 1, 2, 6, 7, 12, 18, 29, 38, 58, 77, 110, 145, 198, 257, 345, 441, 576, 733, 942, 1184, 1503, 1875, 2352, 2914, 3620, 4454, 5493, 6716, 8221, 10001, 12167, 14723, 17816, 21459, 25836, 30988, 37139, 44365, 52956, 63022, 74934, 88873, 105296, 124469
OFFSET
0,6
COMMENTS
The omega-sequence of an integer partition is the sequence of lengths of the multisets obtained by repeatedly taking the multiset of multiplicities until a singleton is reached. For example, the partition (32211) has chain of multisets of multiplicities {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}, so its omega-sequence is (5,3,2,2,1).
EXAMPLE
The a(3) = 1 through a(9) = 18 partitions:
(111) (1111) (2111) (222) (421) (431) (333)
(11111) (321) (2221) (521) (432)
(2211) (4111) (2222) (531)
(3111) (22111) (3311) (621)
(21111) (31111) (5111) (3222)
(111111) (211111) (22211) (6111)
(1111111) (32111) (22221)
(41111) (32211)
(221111) (33111)
(311111) (42111)
(2111111) (51111)
(11111111) (222111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
(111111111)
MATHEMATICA
normQ[m_]:=Or[m=={}, Union[m]==Range[Max[m]]];
omseq[ptn_List]:=If[ptn=={}, {}, Length/@NestWhileList[Sort[Length/@Split[#]]&, ptn, Length[#]>1&]];
Table[Length[Select[IntegerPartitions[n], !normQ[omseq[#]]&]], {n, 0, 30}]
CROSSREFS
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (frequency depth), A325249 (sum).
Sequence in context: A190121 A105329 A124319 * A334906 A078471 A127406
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 23 2019
STATUS
approved