login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260620
Arithmetic derivative of superfactorial(n).
2
0, 0, 1, 16, 912, 179712, 200724480, 1389079756800, 78810485096448000, 38096713995308236800000, 177372596340389981454336000000, 8666143442523657424202209689600000000, 5080543621153782266150614213475696640000000000
OFFSET
0,4
LINKS
FORMULA
a(n) = A003415(A000178(n)).
MAPLE
b:= proc(n) option remember; `if`(n<2, 0,
b(n-1)*n + n!*add(i[2]/i[1], i=ifactors(n)[2]))
end:
s:= proc(n) option remember; `if`(n=0, 1, n!*s(n-1)) end:
a:= proc(n) option remember; `if`(n=0, 0,
b(n)*s(n-1)+n!*a(n-1))
end:
seq(a(n), n=0..15); # Alois P. Heinz, Sep 18 2015
MATHEMATICA
a[n_] := If[n<2, 0, With[{g = BarnesG[n+2]}, g Sum[{p, e} = pe; e/p, {pe, FactorInteger[g]}]]];
a /@ Range[0, 15] (* Jean-François Alcover, Nov 14 2020 *)
PROG
(Python 3.8+)
from math import prod, factorial
from collections import Counter
from sympy import factorint
def A260620(n):
s = prod(factorial(i) for i in range(2, n+1))
return sum(s*e//p for p, e in sum(((lambda x: Counter({k:x[k]*(n-m+1) for k in x}))(factorint(m)) for m in range(2, n+1)), start=Counter({2:0})).items()) if n > 1 else 0 # Chai Wah Wu, Jun 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Matthew Campbell, Sep 18 2015
EXTENSIONS
More terms from Alois P. Heinz, Sep 18 2015
STATUS
approved