

A260623


Decimal expansion of the real solution x to zeta(x)  primezeta(x) = 2.


1



1, 4, 2, 5, 7, 1, 0, 4, 1, 1, 6, 1, 3, 1, 8, 1, 6, 5, 1, 7, 8, 2, 3, 6, 8, 3, 6, 7, 5, 4, 8, 5, 5, 0, 5, 6, 9, 3, 3, 9, 1, 8, 6, 2, 0, 5, 3, 4, 6, 2, 4, 7, 3, 5, 9, 4, 9, 4, 9, 4, 7, 6, 7, 4, 3, 6, 6, 8, 7, 3, 0, 4, 5, 6, 7, 5, 6, 1, 7, 5, 0, 1, 6, 7, 7, 8, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This is also the solution x to Sum_{c composite}(1/c^x) = 1.


LINKS



EXAMPLE

1.4257...


MATHEMATICA

x /. FindRoot[Zeta[x]  PrimeZetaP[x] == 2, {x, 3/2}, WorkingPrecision > 100] // RealDigits // First (* JeanFrançois Alcover, May 07 2021 *)


PROG

(PARI) solve(x=1.1, 2, zeta(x)  sumeulerrat(1/p, x)  2) \\ Michel Marcus, May 07 2021


CROSSREFS



KEYWORD



AUTHOR



EXTENSIONS



STATUS

approved



