login
A243350
Decimal expansion of the unique solution of the equation sum_(p prime)(1/p^x) = 1, a constant related to the asymptotic evaluation of the number of prime multiplicative compositions.
4
1, 3, 9, 9, 4, 3, 3, 3, 2, 8, 7, 2, 6, 3, 3, 0, 3, 1, 8, 2, 0, 2, 8, 0, 7, 2, 1, 4, 7, 4, 5, 6, 4, 4, 3, 2, 7, 9, 0, 4, 7, 2, 7, 4, 2, 9, 4, 8, 4, 3, 8, 3, 9, 4, 1, 2, 7, 4, 7, 6, 5, 8, 2, 2, 8, 8, 8, 0, 6, 2, 4, 9, 2, 4, 8, 7, 2, 4, 7, 8, 0, 0, 2, 3, 3, 3, 9, 0, 5, 2, 0, 0, 2, 1, 6, 6, 8, 5, 1, 3
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's composition constant, p. 293.
LINKS
Jean-Francois Alcover, Table of n, a(n) for n = 1..100
Hugh L. Montgomery and Gérald Tenenbaum, On multiplicative compositions of integers, Mathematika 63:3 (2017), pp. 1081-1090.
Eric Weisstein's MathWorld, Prime Zeta function
EXAMPLE
1.3994333287263303182028072147456443279...
MATHEMATICA
digits = 100; eta = x /. FindRoot[PrimeZetaP[x] == 1, {x, 3/2}, WorkingPrecision -> digits+5]; RealDigits[eta, 10, digits] // First
PROG
(PARI) eps(x=1.)=my(p=if(x, precision(x), default(realprecision))); precision(2.>>(32*ceil(p*38539962/371253907))*abs(x), 9)
primezeta(s)=my(t=s*log(2), iter=lambertw(t/eps())\t, tot); forsquarefree(k=1, iter, tot+=moebius(k)/k[1]*log(abs(zeta(k[1]*s)))); tot;
solve(x=1.399, 1.4, primezeta(x)-1) \\ Charles R Greathouse IV, Nov 16 2018
(PARI) solve(x=1.05, 1.5, 1-sumeulerrat(1/p, x)) \\ Hugo Pfoertner, Nov 28 2021
CROSSREFS
Cf. A243584.
Sequence in context: A159811 A279134 A083352 * A091559 A268107 A306963
KEYWORD
nonn,cons,changed
AUTHOR
STATUS
approved