login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083352
Least positive integer coefficients of power series A(x) such that the coefficients of A(x)^2 + A(x) - 1 consist entirely of squares.
3
1, 3, 9, 9, 3, 15, 33, 18, 36, 24, 75, 96, 51, 96, 159, 165, 255, 168, 27, 60, 333, 255, 66, 18, 441, 291, 735, 258, 390, 696, 480, 696, 1062, 423, 927, 681, 867, 1731, 300, 1131, 969, 1959, 222, 1812, 1047, 2487, 3027, 1020, 537, 2859, 1788, 1698, 63, 2712, 2250, 2934, 282, 2409, 1533, 3243, 1188, 7002, 1779, 1038, 207, 4110, 6156, 7068, 7470, 825, 3501, 3612, 6984, 9945, 2733, 7383, 1581, 2730, 2616, 7476, 13959, 13224, 15078, 12837, 2979, 2805, 2943, 15426, 8871, 4536
OFFSET
0,2
COMMENTS
After the first term, all terms seem to be multiples of 3.
LINKS
EXAMPLE
G.f.: A(x) = 1 + 3*x + 9*x^2 + 9*x^3 + 3*x^4 + 15*x^5 + 33*x^6 + 18*x^7 + 36*x^8 + 24*x^9 + 75*x^10 + 96*x^11 + 51*x^12 + 96*x^13 + 159*x^14 + 165*x^15 + 255*x^16 + 168*x^17 + 27*x^18 + 60*x^19 + 333*x^20 + 255*x^21 + 66*x^22 + 18*x^23 + 441*x^24 + 291*x^25 + 735*x^26 + 258*x^27 + 390*x^28 + 696*x^29 + 480*x^30 + ...
Let the B(x) denote the g.f. of A083353, then
B(x) = A(x)^2 + A(x) - 1 = 1 + 9*x + 36*x^2 + 81*x^3 + 144*x^4 + 225*x^5 + 324*x^6 + 576*x^7 + 1089*x^8 + 1296*x^9 + 1764*x^10 + 2916*x^11 + 4356*x^12 + 6084*x^13 + 7569*x^14 + 9801*x^15 + 16641*x^16 + 20736*x^17 + 25281*x^18 + 32400*x^19 + 39204*x^20 + 53361*x^21 + 69696*x^22 + 76176*x^23 + 90000*x^24 + 110889*x^25 + 149769*x^26 + 176400*x^27 + 184041*x^28 + 207936*x^29 + 281961*x^30 + ...
the coefficients of which are squares (see A083354).
PROG
(PARI) {for(i=1, 30, A=[1]; print1(A[1], ", "); for(i=1, 200, A0=concat(A, 0); for(n=1, 100*A[#A], A0[#A0]=n; B=Vec(Ser(A0)^2 + Ser(A0) - 1); if(issquare(B[#B]), print1(n, ", "); A0[#A0]=n; A=A0; break)))); A}
CROSSREFS
Sequence in context: A157349 A159811 A279134 * A243350 A091559 A268107
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 26 2003
EXTENSIONS
Extended by Paul D. Hanna, Nov 19 2017
STATUS
approved