login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083354
Square root of coefficients of power series: A083352(x)^2 + A083352(x) - 1; term-by-term square root of A083353.
3
1, 3, 6, 9, 12, 15, 18, 24, 33, 36, 42, 54, 66, 78, 87, 99, 129, 144, 159, 180, 198, 231, 264, 276, 300, 333, 387, 420, 429, 456, 531, 582, 603, 591, 675, 735, 816, 879, 864, 945, 1122, 1173, 1251, 1260, 1335, 1503, 1605, 1650, 1728, 1785, 1959, 2070, 2220, 2268, 2340, 2514, 2700, 2883, 2919, 2967, 3294, 3552, 3447, 3744, 3633, 4110, 4251, 4338, 4221, 4851, 4962, 5226, 5217, 5487, 5718, 6243, 6033, 6534, 6753, 6678, 7158
OFFSET
0,2
COMMENTS
After the first term, each term seems to be a multiple of 3.
LINKS
FORMULA
a(n) = sqrt(A083353(n)).
EXAMPLE
A083352(x) = 1 + 3x + 9x^2 + 9x^3 + 3x^4 + 15x^5 + 33x^6 + ...; thus,
A083353(x) = A083352(x)^2 + A083352(x) - 1 = 1 + 9x + 36x^2 + 81x^3 + 144x^4 + 225x^5 + ...
PROG
(PARI) {for(i=1, 30, A=[1]; print1(1, ", "); for(i=1, 200, A0=concat(A, 0); for(n=1, 100*A[#A], A0[#A0]=n; B=Vec(Ser(A0)^2 + Ser(A0) - 1); if(issquare(B[#B]), print1(sqrtint(B[#B]), ", "); A0[#A0]=n; A=A0; break)))); C=vector(#B, n, sqrtint(B[n]))}
CROSSREFS
Sequence in context: A284601 A039004 A070021 * A156242 A060293 A336803
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 26 2003
EXTENSIONS
Extended by Paul D. Hanna, Nov 19 2017
STATUS
approved