OFFSET
1,1
COMMENTS
From Robert G. Wilson v, Apr 02 2017: (Start)
If k is in the sequence, then so are 2k and 5k.
The complement of A284602.
Primitives: 3, 9, 27, 31, 37, 41, 43, 53, 67, 71, 79, 81, 83, 93, 107, 111, 123, ..., .
(End)
From Robert Israel, Apr 03 2017: (Start)
Numbers of the form 2^j * 5^k * m where m > 1, gcd(m,10)=1 and the multiplicative order of 10 (mod m) is odd.
LINKS
EXAMPLE
MAPLE
filter:= proc(n) local m;
m:= n/2^padic:-ordp(n, 2);
m:= m/5^padic:-ordp(m, 5);
m > 1 and numtheory:-order(10, m)::odd
end proc:
select(filter, [$1..1000]); # Robert Israel, Apr 03 2017
MATHEMATICA
Select[Range[215], Mod[Length[RealDigits[1/#][[1, -1]]], 2] == 1 & ]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Ilya Gutkovskiy, Mar 30 2017
STATUS
approved