OFFSET
1,3
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Twin Primes
FORMULA
EXAMPLE
a(15) = 8 because 15 has 4 divisors {1, 3, 5, 15} among which 2 are twin primes {3, 5} therefore 3 + 5 = 8.
MAPLE
N:= 200: # to get a(1)..a(N)
P:= select(isprime, {seq(i, i=3..N+2)}):
TP:= P intersect map(`-`, P, 2):
TP:= TP union map(`+`, TP, 2):
V:= Vector(N):
for p in TP do
pm:= [seq(i, i=p..N, p)];
V[pm]:= map(`+`, V[pm], p);
od:
convert(V, list); # Robert Israel, Mar 30 2017
MATHEMATICA
Table[Total[Select[Divisors[n], PrimeQ[#1] && (PrimeQ[#1 - 2] || PrimeQ[#1 + 2]) &]], {n, 80}]
PROG
(Python)
from sympy import divisors, isprime
def a(n): return sum([i for i in divisors(n) if isprime(i) and (isprime(i - 2) or isprime(i + 2))])
print([a(n) for n in range(1, 91)]) # Indranil Ghosh, Mar 30 2017
(PARI) a(n) = sumdiv(n, d, d*(isprime(d) && (isprime(d-2) || isprime(d+2)))); \\ Michel Marcus, Apr 02 2017
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Ilya Gutkovskiy, Mar 30 2017
STATUS
approved