login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A076109 Least positive k such that k^n is the sum of n consecutive integers, or 0 if no such k exists. 4
1, 1, 3, 0, 5, 3, 7, 0, 3, 5, 11, 0, 13, 7, 15, 0, 17, 3, 19, 0, 21, 11, 23, 0, 5, 13, 3, 0, 29, 15, 31, 0, 33, 17, 35, 0, 37, 19, 39, 0, 41, 21, 43, 0, 15, 23, 47, 0, 7, 5, 51, 0, 53, 3, 55, 0, 57, 29, 59, 0, 61, 31, 21, 0, 65, 33, 67, 0, 69, 35, 71, 0, 73, 37, 15, 0, 77, 39, 79, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

No k exists precisely when n == 0 (mod 4).

a(p) = p if p is a prime.

LINKS

Table of n, a(n) for n=1..80.

FORMULA

a(n) = (n*A076107(n)+(n^2-n)/2)^(1/n) for n != 0 (mod 4).

a(n) = A076108^(1/n).

Multiplicative with a(2^1) = 1; a(2^e) = 0 if e >= 2; a(p^e) = p if p >= 3. - David W. Wilson, Jun 10 2005

a(n) = A007947(n) if n == 1 (mod 2); A007947(n/2) if n == 2 (mod 4); 0 if n == 0 (mod 4). - David W. Wilson, Jun 10 2005

a(4k)=0; otherwise a(n)=p1*...*pm where p1, ..., pm are all distinct odd primes dividing n. - Max Alekseyev, Jun 10 2005

PROG

(PARI) for(n=1, 100, t=n*(n-1)/2:f=0:for(r=1, 10^4, if((r^n-t)%n==0, f=r:break)):print1(f", "))

(PARI) {A076109(n)=if(n%4==0, return(0)); if(n%2==0, n\=2); f=factorint(n)[, 1]; prod(i=1, length(f), f[i])} (Alekseyev)

CROSSREFS

Cf. A076107, A076108.

Sequence in context: A322937 A326989 A326937 * A078788 A284599 A005069

Adjacent sequences:  A076106 A076107 A076108 * A076110 A076111 A076112

KEYWORD

nonn,mult

AUTHOR

Amarnath Murthy, Oct 08 2002

EXTENSIONS

Corrected and extended by Ralf Stephan, Mar 30 2003

More terms from Max Alekseyev, Jun 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 12:19 EDT 2020. Contains 336379 sequences. (Running on oeis4.)