login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326937
Dirichlet g.f.: (2^s - 1) / (zeta(s-1) * (2^s - 2)).
3
1, -1, -3, 0, -5, 3, -7, 0, 0, 5, -11, 0, -13, 7, 15, 0, -17, 0, -19, 0, 21, 11, -23, 0, 0, 13, 0, 0, -29, -15, -31, 0, 33, 17, 35, 0, -37, 19, 39, 0, -41, -21, -43, 0, 0, 23, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 29, -59, 0, -61, 31, 0, 0, 65, -33, -67, 0, 69, -35, -71, 0, -73, 37, 0
OFFSET
1,3
COMMENTS
Dirichlet inverse of A000265.
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d<n} A000265(n/d) * a(d).
a(n) = A055615(n) / A006519(n).
Multiplicative with a(p) = -1 for p = 2 and -p for odd primes p, and a(p^e) = 0 if e > 1. - Amiram Eldar, Dec 02 2020
MATHEMATICA
a[1] = 1; a[n_] := -Sum[(n/d)/2^IntegerExponent[n/d, 2] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 75}]
Table[MoebiusMu[n] n/2^IntegerExponent[n, 2], {n, 1, 75}]
f[2, e_] := -Boole[e == 1]; f[p_, e_] := -Boole[e == 1]*p; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 02 2020 *)
PROG
(PARI) a(n)={n*moebius(n)/2^valuation(n, 2)} \\ Andrew Howroyd, Oct 25 2019
CROSSREFS
Cf. A000265, A006519, A013929 (positions of 0's), A030059 (positions of negative terms), A055615.
Sequence in context: A108500 A322937 A326989 * A336597 A076109 A078788
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Oct 22 2019
STATUS
approved