login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003592 Numbers of the form 2^i*5^j with i, j >= 0. 104
1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
These are the natural numbers whose reciprocals are terminating decimals. - David Wasserman, Feb 26 2002
A132726(a(n), k) = 0 for k <= a(n); A051626(a(n)) = 0; A132740(a(n)) = 1; A132741(a(n)) = a(n). - Reinhard Zumkeller, Aug 27 2007
Where record values greater than 1 occur in A165706: A165707(n) = A165706(a(n)). - Reinhard Zumkeller, Sep 26 2009
Also numbers that are divisible by neither 10k - 7, 10k - 3, 10k - 1 nor 10k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
A204455(5*a(n)) = 5, and only for these numbers. - Wolfdieter Lang, Feb 04 2012
Since p = 2 and q = 5 are coprime, sum_{n >= 1} 1/a(n) = sum_{i >= 0} sum_{j >= 0} 1/p^i * 1/q^j = sum_{i >= 0} 1/p^i q/(q - 1) = p*q/((p-1)*(q-1)) = 2*5/(1*4) = 2.5. - Franklin T. Adams-Watters, Jul 07 2014
Conjecture: Each positive integer n not among 1, 4 and 12 can be written as a sum of finitely many numbers of the form 2^a*5^b + 1 (a,b >= 0) with no one dividing another. This has been verified for n <= 3700. - Zhi-Wei Sun, Apr 18 2023
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 73.
LINKS
Eric Weisstein's World of Mathematics, Regular Number
Eric Weisstein's World of Mathematics, Decimal Expansion
FORMULA
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(10*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
a(n) ~ exp(sqrt(2*log(2)*log(5)*n)) / sqrt(10). - Vaclav Kotesovec, Sep 22 2020
MAPLE
isA003592 := proc(n)
if n = 1 then
true;
else
return (numtheory[factorset](n) minus {2, 5} = {} );
end if;
end proc:
A003592 := proc(n)
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA003592(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jul 16 2012
MATHEMATICA
twoFiveableQ[n_] := PowerMod[10, n, n] == 0; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Jan 12 2012 *)
twoFiveableQ[n_] := Union[ MemberQ[{1, 3, 7, 9}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 10]] == {False}; twoFiveableQ[1] = True; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Oct 26 2010 *)
maxExpo = 14; Sort@ Flatten@ Table[2^i * 5^j, {i, 0, maxExpo}, {j, 0, Log[5, 2^(maxExpo - i)]}] (* Or *)
Union@ Flatten@ NestList[{2#, 4#, 5#} &, 1, 7] (* Robert G. Wilson v, Apr 16 2011 *)
PROG
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim+.5)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Sage)
def isA003592(n) :
return not any(d != 2 and d != 5 for d in prime_divisors(n))
@CachedFunction
def A003592(n) :
if n == 1 : return 1
k = A003592(n-1) + 1
while not isA003592(k) : k += 1
return k
[A003592(n) for n in (1..48)] # Peter Luschny, Jul 20 2012
(Magma) [n: n in [1..10000] | PrimeDivisors(n) subset [2, 5]]; // Bruno Berselli, Sep 24 2012
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003592 n = a003592_list !! (n-1)
a003592_list = f $ singleton 1 where
f s = y : f (insert (2 * y) $ insert (5 * y) s')
where (y, s') = deleteFindMin s
-- Reinhard Zumkeller, May 16 2015
(Python)
# A003592.py
from heapq import heappush, heappop
def A003592():
pq = [1]
seen = set(pq)
while True:
value = heappop(pq)
yield value
seen.remove(value)
for x in 2*value, 5*value:
if x not in seen:
heappush(pq, x)
seen.add(x)
sequence = A003592()
A003592_list = [next(sequence) for _ in range(100)]
(GAP) Filtered([1..10000], n->PowerMod(10, n, n)=0); # Muniru A Asiru, Mar 19 2019
CROSSREFS
Complement of A085837. Cf. A094958, A022333 (list of j), A022332 (list of i).
Sequence in context: A181666 A067943 A067937 * A192716 A159765 A018653
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Incomplete Python program removed by David Radcliffe, Jun 27 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 23:44 EDT 2024. Contains 375795 sequences. (Running on oeis4.)