|
|
A003592
|
|
Numbers of the form 2^i*5^j with i, j >= 0.
|
|
104
|
|
|
1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 125, 128, 160, 200, 250, 256, 320, 400, 500, 512, 625, 640, 800, 1000, 1024, 1250, 1280, 1600, 2000, 2048, 2500, 2560, 3125, 3200, 4000, 4096, 5000, 5120, 6250, 6400, 8000, 8192, 10000, 10240, 12500, 12800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
These are the natural numbers whose reciprocals are terminating decimals. - David Wasserman, Feb 26 2002
Also numbers that are divisible by neither 10k - 7, 10k - 3, 10k - 1 nor 10k + 1, for all k > 0. - Robert G. Wilson v, Oct 26 2010
Since p = 2 and q = 5 are coprime, sum_{n >= 1} 1/a(n) = sum_{i >= 0} sum_{j >= 0} 1/p^i * 1/q^j = sum_{i >= 0} 1/p^i q/(q - 1) = p*q/((p-1)*(q-1)) = 2*5/(1*4) = 2.5. - Franklin T. Adams-Watters, Jul 07 2014
Conjecture: Each positive integer n not among 1, 4 and 12 can be written as a sum of finitely many numbers of the form 2^a*5^b + 1 (a,b >= 0) with no one dividing another. This has been verified for n <= 3700. - Zhi-Wei Sun, Apr 18 2023
|
|
REFERENCES
|
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 73.
|
|
LINKS
|
|
|
FORMULA
|
The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(10*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019
|
|
MAPLE
|
isA003592 := proc(n)
if n = 1 then
true;
else
return (numtheory[factorset](n) minus {2, 5} = {} );
end if;
end proc:
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA003592(a) then
return a;
end if;
end do:
end if;
|
|
MATHEMATICA
|
twoFiveableQ[n_] := PowerMod[10, n, n] == 0; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Jan 12 2012 *)
twoFiveableQ[n_] := Union[ MemberQ[{1, 3, 7, 9}, # ] & /@ Union@ Mod[ Rest@ Divisors@ n, 10]] == {False}; twoFiveableQ[1] = True; Select[Range@ 10000, twoFiveableQ] (* Robert G. Wilson v, Oct 26 2010 *)
maxExpo = 14; Sort@ Flatten@ Table[2^i * 5^j, {i, 0, maxExpo}, {j, 0, Log[5, 2^(maxExpo - i)]}] (* Or *)
|
|
PROG
|
(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim+.5)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011
(Sage)
def isA003592(n) :
return not any(d != 2 and d != 5 for d in prime_divisors(n))
@CachedFunction
if n == 1 : return 1
while not isA003592(k) : k += 1
return k
(Magma) [n: n in [1..10000] | PrimeDivisors(n) subset [2, 5]]; // Bruno Berselli, Sep 24 2012
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a003592 n = a003592_list !! (n-1)
a003592_list = f $ singleton 1 where
f s = y : f (insert (2 * y) $ insert (5 * y) s')
where (y, s') = deleteFindMin s
(Python)
from heapq import heappush, heappop
pq = [1]
seen = set(pq)
while True:
value = heappop(pq)
yield value
seen.remove(value)
for x in 2*value, 5*value:
if x not in seen:
heappush(pq, x)
seen.add(x)
A003592_list = [next(sequence) for _ in range(100)]
(GAP) Filtered([1..10000], n->PowerMod(10, n, n)=0); # Muniru A Asiru, Mar 19 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|