login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132741
Largest divisor of n having the form 2^i*5^j.
11
1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 16, 1, 2, 1, 20, 1, 2, 1, 8, 25, 2, 1, 4, 1, 10, 1, 32, 1, 2, 5, 4, 1, 2, 1, 40, 1, 2, 1, 4, 5, 2, 1, 16, 1, 50, 1, 4, 1, 2, 5, 8, 1, 2, 1, 20, 1, 2, 1, 64, 5, 2, 1, 4, 1, 10, 1, 8, 1, 2, 25, 4, 1, 2, 1, 80, 1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 1, 4, 1, 2, 5, 32, 1, 2
OFFSET
1,2
COMMENTS
The range of this sequence, { a(n); n>=0 }, is equal to A003592. - M. F. Hasler, Dec 28 2015
LINKS
FORMULA
a(n) = n / A132740(n).
a(A003592(n)) = A003592(n).
A051626(a(n)) = 0.
A007732(a(n)) = 1.
From R. J. Mathar, Sep 06 2011: (Start)
Multiplicative with a(2^e)=2^e, a(5^e)=5^e and a(p^e)=1 for p=3 or p>=7.
Dirichlet g.f. zeta(s)*(2^s-1)*(5^s-1)/((2^s-2)*(5^s-5)). (End)
a(n) = A006519(n)*A060904(n) = 2^A007814(n)*5^A112765(n). - M. F. Hasler, Dec 28 2015
Sum_{k=1..n} a(k) ~ n*(12*log(n)^2 + (24*gamma + 36*log(2) - 24)*log(n) + 24 - 24*gamma - 36*log(2) + 36*gamma*log(2) + 2*log(2)^2 - 18*log(5) + 18*gamma*log(5) + 27*log(2)*log(5) + 2*log(5)^2 + 18*log(5)*log(n) - 24*gamma_1)/(60*log(2)*log(5)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023
MAPLE
A132741 := proc(n) local f, a; f := ifactors(n)[2] ; a := 1; for f in ifactors(n)[2] do if op(1, f) =2 then a := a*2^op(2, f) ; elif op(1, f) =5 then a := a*5^op(2, f) ; end if; end do; a; end proc: # R. J. Mathar, Sep 06 2011
MATHEMATICA
a[n_] := SelectFirst[Reverse[Divisors[n]], MatchQ[FactorInteger[#], {{1, 1}} | {{2, _}} | {{5, _}} | {{2, _}, {5, _}}]&]; Array[a, 100] (* Jean-François Alcover, Feb 02 2018 *)
a[n_] := Times @@ ({2, 5}^IntegerExponent[n, {2, 5}]); Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
PROG
(Haskell)
a132741 = f 2 1 where
f p y x | r == 0 = f p (y * p) x'
| otherwise = if p == 2 then f 5 y x else y
where (x', r) = divMod x p
-- Reinhard Zumkeller, Nov 19 2015
(PARI) A132741(n)=5^valuation(n, 5)<<valuation(n, 2) \\ M. F. Hasler, Dec 28 2015
CROSSREFS
Cf. A379003 (ordinal transform), A379004 (rgs-transform).
Cf. also A355582.
Sequence in context: A162407 A368608 A352458 * A072436 A247503 A343430
KEYWORD
nonn,easy,mult,changed
AUTHOR
Reinhard Zumkeller, Aug 27 2007
STATUS
approved