|
|
A260626
|
|
a(n) = gcd(m, 2^m-1) where m is the n-th nonprime positive integer.
|
|
1
|
|
|
1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 5, 7, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 9, 1, 1, 5, 21, 1, 1, 1, 3, 1, 1, 1, 1, 27, 1, 1, 1, 1, 15, 1, 7, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 1, 3, 5, 1, 1, 21, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 3, 1, 1, 25, 3, 1, 7, 1, 27, 11, 1, 1, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
2^m - 1 is a nonprime number if m is a nonprime number.
|
|
LINKS
|
Michel Lagneau, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
a(n) = gcd(A018252(n), 2^A018252(n)-1).
a(n) = A014491(A018252(n)). - Michel Marcus, Nov 01 2015
|
|
MAPLE
|
seq(`if`(isprime(m), NULL, igcd(m, 2^m-1)), m=1..150);
|
|
MATHEMATICA
|
GCDnonPrime[n_Integer]:=GCD[2^FixedPoint[n+PrimePi@#&, n+PrimePi@n]-1, FixedPoint[n+PrimePi@#&, n+PrimePi@n]]; Array[GCDnonPrime, 120]
GCD[#, 2^#-1]&/@Select[Range[200], !PrimeQ[#]&] (* Harvey P. Dale, Aug 25 2019 *)
|
|
PROG
|
(PARI) for(n=1, 1e3, if(!isprime(n), print1(gcd(n, 2^n-1)", "))) \\ Altug Alkan, Nov 01 2015
|
|
CROSSREFS
|
Cf. A014491, A018252.
Sequence in context: A060901 A351545 A087612 * A155828 A226203 A327791
Adjacent sequences: A260623 A260624 A260625 * A260627 A260628 A260629
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Michel Lagneau, Oct 31 2015
|
|
STATUS
|
approved
|
|
|
|