The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A155828 Number of integers k in {1,2,3,..,n} such that kn+1 is a square. 3
 0, 0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 3, 3, 1, 1, 7, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 3, 1, 1, 3, 7, 1, 3, 1, 3, 3, 1, 1, 7, 1, 1, 3, 3, 1, 1, 3, 7, 3, 1, 1, 7, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 1, 7, 1, 1, 3, 3, 3, 3, 1, 7, 1, 1, 1, 7, 3, 1, 3, 7, 1, 3, 3, 3, 3, 1, 3, 7, 1, 1, 3, 3, 1, 3, 1, 7, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 COMMENTS Conjecture: All terms a(n) are of the form 2^m - 1. This has been verified up to n = 1000. It appears that the terms of this sequence are exactly one less than those of A060594, indicating that the terms are related to the square roots of unity mod n. - John W. Layman, Feb 04 2009 The conjecture that a(n) is of the form 2^m - 1 holds trivially. In fact, the conjecture can be restated as follows: For any positive integer n, the solutions of the congruence x^2 = 1 (mod n) with 1 <= x <= n is a power of two. By the Chinese remainder theorem, this reduces to the case when n is a prime power. It is well known that the solution of x^2 = 1 (mod p^a) is two when p is an odd prime (one may obtain this by induction on a). As for the number of solutions of the congruence x^2 = 1 (mod 2^a), it equals 1, 2, 4 according to whether a=1, 2, or a>2. - Zhi-Wei Sun, Feb 11 2009 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A060594(n) - 1. - after Zhi-Wei Sun, Michel Marcus, Jul 10 2014 EXAMPLE 1*8 + 1 = 9, 3*8 + 1 = 25, 6*8 + 1 = 49, whereas other values are not square, so a(8) = 3. PROG (PARI) a(n) = sum(k=1, n, issquare(k*n+1)); \\ Michel Marcus, Jul 10 2014 CROSSREFS Cf. A060594 Sequence in context: A351545 A087612 A260626 * A226203 A327791 A051997 Adjacent sequences: A155825 A155826 A155827 * A155829 A155830 A155831 KEYWORD nonn AUTHOR John W. Layman, Jan 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 05:38 EST 2022. Contains 358431 sequences. (Running on oeis4.)