login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351545
a(n) is the largest unitary divisor of sigma(n) such that its every prime factor p also divides A003961(n), and valuation(sigma(n),p) >= valuation(A003961(n),p).
4
1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 9, 1, 5, 1, 3, 1, 1, 1, 9, 1, 1, 1, 27, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 5, 9, 1, 7, 1, 3, 1, 1, 7, 9, 1, 9, 1, 9, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 1, 3, 5, 1, 1, 9, 1, 1, 1, 9, 1, 1, 1, 9, 13, 1, 1, 27
OFFSET
1,2
FORMULA
a(n) = Product_{p^e || A000203(n)} p^(e*[p divides A003961(n) but p^(1+e) does not divide A003961(n)]), where [ ] is the Iverson bracket, returning 1 if the condition holds, and 0 otherwise. Here p^e is the largest power of prime p dividing sigma(n).
a(n) = A000203(n) / A351547(n).
For all n >= 1, a(n) is a divisor of A351544(n), which is a divisor of A000203(n).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A351545(n) = { my(s=sigma(n), f=factor(s), u=A003961(n)); prod(k=1, #f~, if(!(u%f[k, 1]) && (f[k, 2]>=valuation(u, f[k, 1])), f[k, 1]^f[k, 2], 1)); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 16 2022
STATUS
approved